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Abstract

The field of classical cryptography encompasses various forms of simple pen-and-paper ciphers
that were in widespread use until the early 20th century. Although these ciphers have long
been surpassed by modern cryptographic systems, they can still be challenging to break
using manual methods alone. Indeed, there exist several well-known classically-encrypted
cryptograms which, at present, remain unbroken.

Automated cryptanalysis of classical ciphers has been carried out in existing research, using
optimisation techniques in conjunction with appropriate heuristics to evaluate the validity of
decryptions. However, this work is largely limited to a few kinds of simple ciphers and the
results obtained by some researchers have been criticised by others as being suboptimal.

Building on the approaches used by earlier work, a flexible software tool is constructed to
perform automated cryptanalysis on texts encrypted with various kinds of classical ciphers.
The tool is expressly designed to support the tailoring of cryptanalysis to particular styles of
ciphertext, featuring an extensible framework for defining ciphers and supporting different
evaluation heuristics and optimisation algorithms.

The efficacy of the tool is investigated using a selection of sample ciphertexts and unsolved
cryptograms. Topics for further research into automated cryptanalysis are proposed.



Statement of Ethics

There is always a possibility that published cryptanalysis techniques will be used for unethical
purposes. However, the cryptanalysis techniques described in this report are applicable only to
classical ciphers and are unsuitable for performing attacks on modern cryptographic systems.

In the author’s judgement, the work described in this report contravenes no ethical guidelines
regarding the applications of cryptanalytic techniques.
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1 Classical Cryptography

This chapter presents an overview of classical ciphers and cryptanalysis techniques and their relationship
to modern cryptographic systems. A selection of unsolved cryptographic puzzles are presented.

1.1 Introduction to Cryptography

Cryptography (from the Greek kryptós gráphein, or “hidden writing”) is the study of methods
for preserving the secrecy of information.

Whether a message is transmitted by courier, the postal system, telephone or the Internet,
there is always a possibility that it will be intercepted by an unauthorised party. If the contents
of the message are confidential, then one should take appropriate measures to ensure its
secrecy. This is the role of cryptography, which is – and has been for hundreds of years – an
essential tool for achieving security in communications.

Over the past 40 years, the global proliferation of digital communication networks, in con-
junction with the exponential increase in available computational resources, has revolutionised
the field of cryptography. Today, the practical applications of modern cryptographic tools and
techniques are wide-ranging, but the objective of all is to establish and preserve – in some way
– the following information security properties:

Confidentiality: The information contained within a message (or, more generally, an encrypted
data object) is unreadable to all but the intended recipient.

Authenticity: The truthfulness of properties claimed for a message may be verified and con-
firmed. These properties may relate, for example, to the authorship of the message, its
purpose and the time of its creation.

Integrity: If the contents of a message are changed during its transmission from sender to
recipient – whether by accidental corruption or by deliberate tampering – the modification
can always be detected by the recipient.

Non-repudiation: The creator of a message cannot dispute the authenticity of the message, nor
can the sender deny having sent the message.

Classical cryptography encompasses all pen-and-paper ciphers developed prior to the advent
of more sophisticated cryptosystems in the 20th century. Hence, a distinction may be drawn
between classical and modern cryptographic techniques, in that the latter are designed to be
performed expressly by computer.

Due to their (relative) simplicity, classical ciphers are today regarded as being fundamentally
insecure; they have long been surpassed in security and capability by modern cryptographic
systems and, therefore, they are rarely used in practice for any serious application. Remarkably,
however, the primitive components of classical ciphers – substitutions and transpositions
(Section 1.2) – constitute the “building blocks” of modern block ciphers such as DES and AES.

Cryptography should not be confused with steganography (“covered writing”), which is
the practice of concealing the existence of secret information within a medium: invisible ink,
the microdot and digital watermarking are examples of steganographic devices. However,
steganography (by itself) cannot be relied upon to ensure secure communication, as it cannot
prevent an adversary from discovering the existence of a hidden message and proceeding to
extract and then read the information concealed therein.
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1.1 Introduction to Cryptography

1.1.1 Principles of Cryptography

Classical cryptography is synonymous with encryption, the transformation of information (the
plaintext) to an unintelligible form (the ciphertext); and decryption, the process of retrieving
information from the ciphertext. When taken together, the algorithms for encryption and
decryption are called ciphers and constitute a cryptographic system (cryptosystem).

Definition 1 (Stinson, 2002)
A cryptosystem is a five-tuple (P , C,K, E ,D), where the following conditions are satisfied:

• P is a finite set of possible plaintexts

• C is a finite set of possible ciphertexts

• K, the keyspace, is the finite set of all possible keys

• For each k ∈ K, there is a encryption rule ek ∈ E and a corresponding decryption rule dk ∈ D.
Each ek : P → C and dk : C → P are functions such that dk (ek (x)) = x for every plaintext
element x ∈ P .

A cryptosystem requires a key parameter to specify the encryption (or decryption) rule.
The encryption key ek is closely related to the decryption key dk and, for symmetric-key
ciphers (including all classical ciphers), if either key is known, the other may be derived in a
straightforward manner1.

A prerequisite of every strong cryptosystem is that it must not be feasible to derive the
plaintext from the ciphertext without the key. This is reflected by Kerckhoffs’ principle, which
states that “no inconvenience should occur if [the cryptosystem] falls into the hands of the enemy”
(Bauer, 1997) and, implicitly, the secrecy of the key is paramount to the security of the system2.
Maintaining the secrecy of a key is difficult in practice, which has led to the development of
various systems and protocols for key management and distribution.

1.1.2 Introduction to Cryptanalysis

Cryptanalysis – in a sense, the antithesis of cryptography – is the art and science of recovering
the meaning of encrypted information, without the authorisation of the communicating parties
and, by extension, without knowledge of the secret key.

The application of cryptanalytic methods to find and exploit weaknesses in a cryptosystem
is known as an attack. If an attack on a cipher is successful, the cipher is said to be broken3 and
should no longer be regarded as secure.

Only a cryptanalyst is qualified to judge the security of a cryptosystem (Bauer, 1997); if
attacked by a determined cryptanalyst, weak encryption is no more secure than no encryption
whatsoever. Indeed, overconfidence in the security of a cipher system may result in disaster4.

1This contrasts with public-key ciphers, which are designed to ensure that, given only a public key, the process of
determining the corresponding private (secret) key is an extremely hard computational problem.

2This is equivalent to Shannon’s maxim: “the enemy knows the system being used” (Bauer, 1997).
3A cryptanalyst need not focus on obtaining a total break of a cryptosystem – that is, a means of deriving the secret

key from a set of ciphertexts – but may wish to achieve lesser goals, such as determining a causal relationship
between plaintexts and ciphertexts. Indeed, cryptanalytic techniques are employed by cryptographers, to find
and correct weakness in cryptosystems.

4The downfall of Mary Queen of Scots (Section A.4) is a poignant historical example.
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1 Classical Cryptography

1.2 Classical Ciphers

1.2.1 Substitution Ciphers

A substitution cipher defines a total mapping5 from the plaintext alphabet to the ciphertext
alphabet. This mapping (the key) is often expressed as a permutation of the ciphertext alphabet,
assuming the lexicographic ordering of the plaintext alphabet. Hence, for a 26 letter alphabet,
such as English, there are 26! (' 4× 1026) distinct substitution mappings (Menezes et al., 1996).

Plain alphabet a b c d e f g h i j k l m n o p q r s t u v w x y z
Cipher alphabet F I Q L C U O Z Y S K G A W B E R N T D J H M V X P

Figure 1.1: An example substitution mapping over the English alphabet.

Simple (monoalphabetic) substitution

Encryption by simple (monoalphabetic) substitution is performed by replacing each symbol
(or groups of symbols6) in the plaintext with the corresponding ciphertext alphabet symbol,
as specified by the key. For example, the key shown in Figure 1.1 transforms the message
“attack at dawn” to the ciphertext “FDDFQK FD LFMW”. (Notice that the letters ‘A’ and ‘T’
are repeated in the plaintext, correlating with the multiple occurrences of ‘F’ and ‘D’ at the
same positions in the ciphertext.)

Monoalphabetic substitution does not change the statistical characteristics of a message: the
frequency (occurrence count) of each letter in any plaintext will equal the frequency of the
equivalent symbol in the corresponding ciphertext. Because the highest frequency symbols in
the ciphertext will usually represent the most common letters in natural language, one can
cryptanalyse a sufficient length of ciphertext by frequency analysis (Subsection 1.3.1) to recover
the plaintext.

Homophonic substitution

Naïve frequency analysis may be defeated by levelling the frequencies of the symbols in the
ciphertext. This may be accomplished by homophonic substitution, in which each letter in the
plaintext alphabet is mapped to a set of homophones drawn from an enlarged ciphertext alphabet
of symbols. The number of homophones assigned to each letter should be proportional to the
relative frequency of the letter in the plaintext.

Provided that each homophone is used evenly in encryption, the symbol frequencies of the
resultant ciphertext will be uniformly distributed. However, the statistical relations between
letters are not masked by homophonic substitution, which means that an encrypted message
remains vulnerable to frequency analysis on groups of symbols in the ciphertext.

Polyalphabetic substitution

A polyalphabetic substitution cipher draws from multiple ciphertext alphabets. Encryption
is performed by splitting the plaintext into portions, then encrypting each portion with a
distinct substitution key. This technique equates to a one-to-many mapping from plaintext to
ciphertext symbols, as opposed to the one-to-one mapping of a simple substitution cipher.

The advantage of polyalphabetic substitution is that repeated letters in a plaintext do not
correlate in the ciphertext, making the ciphertext invulnerable to standard frequency analysis.

5If the plaintext and ciphertext alphabets contain the same number of symbols, then the mapping is bijective.
6Substitution ciphers which operate on groups (blocks) of symbols are said to be polygraphic. An example of a

polygraphic substitution cipher is the Playfair cipher (Section A.6), which operates on letters in pairs.
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1.2 Classical Ciphers

The canonical form of polyalphabetic substitution is the Vigenère cipher (Section A.3). This
takes a keyword as the key parameter, which selects the key functions from a set of regularly
shifted ciphertext alphabets as shown in Figure 1.2. The keyword is repeated for the length of
the message; each letter is then encrypted using the table row indexed by the corresponding
keyword letter. For example, assuming that the keyword is “hello”, then the message
“attack at dawn” is encrypted as “HXELQR EE OODR”.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
T T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
X X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Figure 1.2: The tabula recta (or Vigenère tableau) of the English alphabet.

The Vigenère cipher was long thought unbreakable7, – earning it the title “le chiffre in-
déchiffrable” – until Friedrich Kasiski published a procedure for its cryptanalysis in 1863.

1.2.2 Transposition Ciphers

A transposition cipher rearranges the letters in a plaintext according to some pattern. The
mapping from plaintext to ciphertext is determined by the permutation key k : Zd → Zd,
which is a bijective function over the integers 1 to d inclusive.

Two common forms of transposition ciphers are block transpositions8 and columnar transposi-
tions. Various other types of transposition cipher – such as geometric transpositions (“turning
grille” ciphers) – can be described in terms of block and columnar transpositions.

Since a transposition cipher changes the positions of letters – not the letters themselves – the
ciphertext will inherit the exact letter frequencies of the plaintext. This characteristic can be
used to determine whether a ciphertext has been produced by a transposition cipher: if so, the
ciphertext will possess letter frequencies which approximate those of natural language.

Block transposition

To perform block transposition, the letters of the message are separated into blocks of size d,
then the letters in each block are rearranged in the order specified by the permutation key.

7Gilbert Vernam realised in 1918 that if the keyword is randomly generated and equals the message length without
repetition (a running key) then the ciphertext produced will be indistinguishable from random data, making
cryptanalysis impossible (Mollin, 2005). The caveat of this “one-time-pad” method is that the keyword may
only be used once without compromising the cipher’s security (Menezes et al., 1996), which gives rise to the
problem of distribution of key material to correspondents.

8Block transposition is also known as complete-unit (Gaines, 1956) or periodic permutation (Denning, 1982).
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1 Classical Cryptography

Using the permutation 〈3, 1, 4, 2〉, the plaintext “fluorescence” is encrypted to “UFOL
SRCE CEEN”. The original message may be recovered by re-applying the transposition process
using the inverse permutation9 〈2, 4, 1, 3〉.

In cases where the plaintext does not divide exactly into a fixed number of blocks, the
text may be padded to the required length by appending null symbols, before encryption is
performed. This ensures a regular transposition.

Columnar transposition

To prepare a message for columnar transposition, the letters are written (in rows) into a matrix
of d columns. Each matrix column is assigned an index number, which is equal to the value
at the corresponding position in the permutation (expressed as a vector). The ciphertext is
obtained by reordering the columns and reading down each column (Figure 1.3).

6 3 2 4 1 5
N O W I S T
H E W I N T
E R O F O U
R D I S C O
N T E N T

Figure 1.3: An example transposition matrix. The permutation key is 〈6, 3, 2, 4, 1, 5〉; the
ciphertext reads “SNOCT WWOIE OERDT IIFSN TTUO NHERN”.

If the number of letters in the plaintext is not an exact multiple of d, there are insufficient
letters to fill the last row of the matrix, so the column lengths will be unequal. This may be
rectified by padding the message with null symbols (as with block transposition). Alternatively,
the ciphertext may be read directly from the uneven columns, preserving the message length,
but resulting in an irregular transposition. In this case, the mapping from plaintext to ciphertext
is not wholly determined by the key, but also by properties of the text itself, such as its length.

1.2.3 Product Ciphers

There is nothing to prevent the use of multiple ciphers to perform encryption. A product cipher
is simply the composition of two or more substitution or transposition “functions”: that is, the
ciphertext produced by one cipher function is taken as the plaintext by the next function.

By increasing the complexity of the relationship between plaintext and ciphertext, a product
cipher provides greater security than a single substitution or transposition. A classic example
of a product cipher is the double columnar transposition10, which was used as a field cipher in
both World Wars (Bauer, 1997); a modern example is the substitution-permutation network11.

A product cipher must be constructed with care. Two simple substitution functions placed
together will compose to form only a single substitution function, since their keys will coalesce.
Likewise, two consecutive block transpositions with equal key sizes are equivalent to a single
block transposition. Indeed, if the keys are pairwise inverse, then encryption will result in the
identity transformation: the ciphertext will be identical to the plaintext in all cases.

9To obtain the inverse k−1 of a permutation k, each number 1, 2, . . . , d is exchanged with the index of the position
that it occupies in the vector form of k.

10Applying multiple encryptions is a tedious, time-consuming and error-prone task to execute by hand, which
historically limited the adoption of product ciphers. However, the advent of high-speed digital computers has
rendered this concern irrelevant.

11Originally proposed by Shannon (1949), substitution-permutation networks are the basis of Feistel ciphers, in
which multiple iterations of alternating substitutions and block transpositions are applied (Denning, 1982).
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1.3 Cryptanalysis Techniques for Classical Ciphers

1.2.4 Code Systems

In the context of cryptography, a code is a type of cryptosystem that is defined by a codebook (a
lookup table, or “dictionary”) of codegroups, each of which represents an arbitrary unit of text,
such as a word, phrase, or an entire sentence. A message is encoded by replacing each unit of
the plaintext with the equivalent codegroup. For example, using the codebook in Figure 1.4,
the message “attack the hill at dawn” would be encoded as “RED BLACK YELLOW”.

attack = red the castle = white at dawn = yellow
defend = green the hill = black at noon = pink

retreat from = blue the town = grey at dusk = orange

Figure 1.4: An example codebook.

One recurring example of a code system throughout history is the nomenclator, which
combines a codebook with a substitution cipher, which is used to encrypt any phrase that is
not included (as a codegroup) within the codebook (Section A.4, A.5).

Technically speaking, codes are distinct from ciphers: whereas ciphers are functions on
fixed-size groups of letters, code systems operate at the semantic (or linguistic) level and
generally shorten the length of an encoded message.

Communication by code is necessarily restricted to the phrases defined in the codebook12:
hence, ciphers have the advantage of generality. However, a well-designed code system may
be harder to cryptanalyse than any classical cipher13, because an encoded message contains
fewer structural “clues” than the equivalent ciphertext, which precludes the use of techniques
such as frequency analysis.

1.3 Cryptanalysis Techniques for Classical Ciphers

In the domain of classical cryptography, the cryptanalyst is concerned only with finding the
secret key (and, by implication, the plaintext) for a given ciphertext. This section presents a
selection of cryptanalytic techniques suitable for attacking various types of classical ciphers.

1.3.1 Frequency Analysis

In natural language, some letters are used more often than others. For a typical sample of
English text, the letter ‘E’ is (usually) the most common14, followed by ‘T’ and ‘A’, whereas
the letters ‘J’, ‘Q’, ‘X’ and ‘Z’ occur rarely. Taking a large quantity of text as a corpus, the
characteristic frequency of each letter in the alphabet can be identified (Table 1.1).

To crack a simple substitution cipher, the relative frequencies of each ciphertext symbol may
be mapped onto the set of characteristic frequencies for the plaintext alphabet. However, this
process is not foolproof: for a given ciphertext, the most common symbol need not necessarily
map to ‘E’, but it will almost certainly represent a high-frequency letter. When the plaintext

12Depending on the domain of usage, this is often adequate. Prior to the Second World War, code systems were
used exclusively by every navy in the world, because “the number of things ships can be ordered to do is somewhat
limited, and does not demand a great vocabulary” (Pratt, 1939).

13Cryptanalysis of a code requires the deduction of the meaning of every codegroup in the message and, in doing
so, the codebook is reproduced. This is akin to translating a document written in an unknown language; indeed,
cryptanalytic techniques have been used to “decipher” ancient scripts written in lost languages (Singh, 2000).

14This is not always the case: the frequency characteristics of a text may be purposefully skewed, as wryly
demonstrated by Singh (2000): “From Zanzibar to Zambia to Zaire, ozone zones make zebras run zany zigzags.”. (This
form of writing is known as a lipogram.)

11



1 Classical Cryptography

Letter A B C D E F G H I J K L M
Frequency (%) 8.2 1.5 2.8 4.3 12.7 2.2 2.0 6.1 7.0 0.2 0.8 4.0 2.4
Letter N O P Q R S T U V W X Y Z
Frequency (%) 6.7 7.5 1.9 0.1 6.0 6.3 9.1 2.8 1.0 2.4 0.2 2.0 0.1

Table 1.1: Characteristic letter frequencies of English, sampled from newspapers and novels.
Reproduced from Beker and Piper (1982).

identities of the common ciphertext symbols have been correctly identified, the remaining
symbols can be determined by applying a combination of intuition and phonetic knowledge15.

To cryptanalyse more sophisticated ciphers, frequency analysis may be extended to groups
of consecutive letters. (In the cryptographic lexicon, letter groups are known as n-grams: single
letters are unigrams, pairs of letters are bigrams and letter triples are trigrams.)

Again, each bigram and trigram has a characteristic frequency: in English, the bigram
‘TH’ and trigram ‘THE’ are very common (and would be expected to occur many times in a
correct decryption), whereas the occurrence of a trigram such as ‘ZQT’ suggests an erroneous
decryption (Clark, 2003).

The effectiveness of frequency analysis is dependent upon the length of the ciphertext. If
the ciphertext is too short, the extracted n-gram statistics will not correlate with the frequency
statistics of natural language, thus yielding little insight into the mapping between plaintext
and ciphertext. Churchhouse (2001) suggests that, to cryptanalyse a simple substitution cipher,
a minimum of 200 letters is necessary if unigram statistics are used alone, but if bigram and
trigram statistics are also factored into the analysis, this may be reduced to 50 or 60 letters.

1.3.2 The Kasiski Examination

The Kasiski examination16 is a tool for determining the period (the number of substitution
alphabets) used by a polyalphabetic substitution cipher. As with frequency analysis, this
technique relies on there being a sufficient amount of available ciphertext.

First, the ciphertext is examined to identify repeated groups of letters. It is highly likely17

that these identical ciphertext sequences correspond to multiple encipherments of the same
word. Since polyalphabetic substitution is periodic, the distance between each letter group
and its repetition must be some multiple of the keyword length. By isolating several repeated
sequences, the actual keyword length may be determined as a common factor of the distances
between them.

Once the keyword length is known, the ciphertext can be broken into its constituent
substitution alphabets, then techniques such as frequency analysis may be applied to each
individual alphabet to crack the whole cipher.

A somewhat similar (but more generally applicable) technique is coincidence counting, intro-
duced by William F. Friedman in 1922.

1.3.3 Probable Words

A word or phrase that is known (or suspected18) to exist in the plaintext is called a crib. By
guessing the location of a crib word in the plaintext, the crib may be matched up with its

15An an example, in English (and other languages) the letter ‘Q’ is invariably followed by ‘U’. Hence, if the symbol
representing ‘Q’ can be identified in the ciphertext, then so can the symbol for ‘U’.

16Whilst the Kasiski examination is attributed to Friedrich Kasiski, who published it in 1863, it was independently
discovered by Charles Babbage some ten years earlier (Singh, 2000).

17This is not always the case: the repetition may be purely accidental or, alternatively, may be due to repeated
letters in the cipher keyword (Gaines, 1956).

18Often, a set of crib words can be garnered from the context of a message.
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encrypted form at the corresponding position in the ciphertext, forming a “crib pair”.
Given a crib pair, key information can be inferred by tracing the relationship between the

crib and its encrypted form. From this, other portions of the plaintext can be decrypted.
If these decryptions make sense and do not contradict existing knowledge of the plaintext
content, it is likely that the position guessed for the crib is correct.

Whilst the cribbing procedure can be carried out manually, it is especially well-suited to
automation: a crib may be systematically trialled at each possible position in the plaintext,
until a valid position is determined19.

The cryptanalyst’s task is made easier if the ciphertext contains punctuation and spacing
between words, since these indicate the length and structure of words and sentences. For this
reason, non-alphabetic characters are usually removed from the plaintext prior to encryption.

1.4 Unsolved Cryptographic Puzzles

Most classical ciphers are trivially weak by modern standards; they are vulnerable to attacks
using well-known cryptanalysis methods (Section 1.3) or with the assistance of computers.

Remarkably, a select few cryptograms20 – some dating back hundreds of years – remain
unsolved, despite being subjected to attacks by some of the world’s foremost cryptographers
and many keen amateur code-breakers alike. Consequently, they are regarded as the most
enduring puzzles in cryptography; some have even achieved fame (and notoriety) that extends
beyond the cryptographic literature and into the realm of popular culture.

1.4.1 The Dorabella Cipher

Sir Edward Elgar (1857 – 1934), the celebrated English composer, was a keen cryptologist – a
man equally fascinated with ciphers as with music (Sams, 1970). Combining his interests, he
incorporated coded messages into many of his compositions (Jones, 2004).

Elgar’s first major orchestral work, the Variations on an Original Theme of 1899 (commonly
known as the “Enigma Variations”) established him as Britain’s foremost composer of the day.
This work comprises 14 variations in total, each of which depicts a figure in Elgar’s life: these
are his wife, 12 of his friends and, finally, himself (Kruh, 1998). The Tenth Variation is a tribute
to Dora Penny (“Dorabella”), a young woman whom Elgar had befriended, having discovered
a mutual appreciation of cycling, football and kite flying.

In July 1897, Elgar sent an enciphered letter to Dora, which has come to be known as the
Dorabella cipher (Figure 1.5). Dora herself was quite unable to make sense of it and, after
Elgar’s death, she published it in her memoirs, stating:

I have never had the slightest idea what message it conveys; he never explained it and
all attempts to solve it have failed. Should any reader of this book succeed in arriving at a
solution it would interest me very much to hear of it.

Given that Elgar was obsessed with cryptograms (Sams, 1997), the cipher is regarded as
unlikely to be random gibberish. Instead, it is to be expected that Elgar had intended that
Dora would be able to solve it, so the method of encipherment must not be too complex21.

The message is 87 characters long; the symbols are drawn from an alphabet of single, double
and triple arc glyphs, each rotated in eight orientations (Sams, 1970). Analysis of the frequency

19The cryptologic “Bombe” machines, designed by Alan Turing in the Second World War to break the German
“Enigma” cipher, made extensive use of this technique (Hodges, 1992).

20More unsolved cryptograms are described at http://elonka.com/UnsolvedCodes.html
21On the other hand, Belfield (2006) speculates that it is a love letter and, perhaps, Elgar deliberately constructed

the cipher so that neither Dora, nor anyone else, would be able to break it.
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Figure 1.5: Edward Elgar’s unsolved cipher letter to Dora Penny.

distribution22 suggests a substitution cipher: however, all attempts to decrypt it under this
assumption have failed (Jones, 2004). There may be a double encryption: a substitution step
followed by a transposition step, for instance. Alternatively, some of the characters may
represent nulls but, in order to justify which symbols should be disregarded, one must first
detect a regular pattern in the message.

Elgar was fond of phonetic spelling23 and it is possible that he used this technique in the
cipher to complicate its decryption. Along these lines, Sams (1970) proposes a solution, which
reads as follows:

STARTS: LARKS! IT’S CHAOTIC, BUT A CLOAK OBSCURES MY NEW LETTERS.
BELOW: I OWN THE DARK MAKES E.E. SIGH WHEN YOU ARE TOO LONG GONE.

This solution appears to be somewhat plausible, but should be treated with caution, as other
(equally valid) decryptions could potentially be extracted simply by interpreting the phonetic
groups in a different manner.

The Dorabella cipher still receives considerable interest24, but has not yet given up its secret.
To mark the 150th anniversary of Elgar’s birth, the Elgar Society has issued a challenge25 to
“Solve the Dorabella Cipher”.

1.4.2 The Voynich Manuscript

In 1912, the rare book dealer Dr. Wilfrid Voynich bought a chest of ancient manuscripts from
the Villa Mondragone, a Jesuit college in Frascati, Italy. Amongst their number, he discovered
a small untitled manuscript comprising 102 leaves of vellum. This volume, which has come
to be known as the Voynich manuscript, is the largest and most famous unsolved text in the
public domain, representing the largest prize in code-breaking today (Belfield, 2006).

The manuscript is handwritten in an elegant yet unique script: 99.86% of the text may
be represented by 27 basic characters (Landini, 2001). However, the text is unreadable; it
is not written in any known language and appears to be enciphered. The only clue to the
manuscript’s purpose is provided by the esoteric illustrations which cover almost every page,
many of which have no apparent parallel with reality. These may be classified into six distinct
groups: herbal, astronomical, biological, cosmological, pharmaceutical and “recipes”. Analysis
of these drawings suggests that the manuscript is of European origin.

22This is practically the minimum amount of letters for which frequency analysis is capable of extracting useful
information (Subsection 1.3.1).

23Elgar referred to Dora’s choral singing as “warbling wigorously in Worcester wunce a week” (Jones, 2004).
24Discussion continues in the Elgar-Cipher newsgroup, http://tech.groups.yahoo.com/group/Elgar-Cipher/
25Elgar Society challenge: http://www.elgar.org/5cipher.htm
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Figure 1.6: Folio 105r of the Voynich manuscript. (Source: Yale University Beinecke Library.)

Attached to the front of the manuscript is a letter26 written by Johannes Marcus Marci to the
Jesuit scholar Athanasius Kircher in 1666. Marci mentions that the manuscript was purchased
in 1586 by the Holy Roman Emperor Rudolf II, who believed that it was written by Roger
Bacon in the 13th century. However, this has been refuted by modern scholarship, which
places the origin of the manuscript between 1450 and 1520 according to the illustrations27. The
authorship of the manuscript remains a matter of debate.

26A transcription of Marci’s letter is available at http://www.voynich.nu/letters.html#mm66
27Radiocarbon dating of the manuscript has not been carried out, because it would require the destruction of part

of the manuscript and would not be sufficiently precise to be conclusive.

15

http://beinecke.library.yale.edu/dl_crosscollex/getSETS.asp?ITEM=2002046
http://www.voynich.nu/letters.html#mm66


1 Classical Cryptography

Possible interpretations

The Voynich manuscript has attracted the attention of many professional cryptographers
and keen amateurs. A multitude of theories pertaining to its content have been postulated;
however, all are based on conjecture, most are unsubstantiated by known evidence and none
are conclusive. These theories may be divided into two categories:

The manuscript is authentic. It may describe inventions, scientific discoveries, or religious
rituals. Alternatively, it could be the handbook of a medieval alchemist or herbalist. In
this case, the text must be written in a cipher, an artificial language or an obscure dialect
of a natural language. There may even be information concealed by steganographic
methods – encoded in the length or shape of pen strokes, for example.

The manuscript is a hoax. It may have been fabricated deliberately for financial gain28, or be
the accidental product of the imagination of a disturbed mind29. In either case, parts of
the manuscript may contain intelligible material, but these must represent the “needle in
a haystack” of nonsensical placeholder text.

The earliest “solution” was proposed by Professor William Newbold in 1921. He examined
the text of the manuscript under magnification, finding that each character was constructed
from a series of minute markings that resembled a form of Greek shorthand. By a complicated
process of anagramming and extrapolation, Newbold extracted a Latin plaintext which he
claimed to be the work of Roger Bacon. However, close study of the markings showed them to
be mere artifacts of the ink drying and, in 1931, John Manly demolished Newbold’s solution,
by demonstrating that his methods for text extraction were fundamentally flawed and could
be used to produced other decipherments with equal validity30. Despite their shortcomings,
variations of Newbold’s methods have been employed by others – such as Joseph Feely in 1943
– but these have never been adequately justified.

The rapid dismissal of many proposed “solutions” has motivated others to favour the hoax
hypothesis. Many suspects for fabricating the manuscript have been considered: chief amongst
them is Edward Kelley, a notorious Elizabethan-era alchemist and swindler, who may have
collaborated with John Dee to manufacture the manuscript as a relic of Roger Bacon in order
to defraud Rudolf II (Rugg, 2004).

Statistical analysis

Textual analysis of the manuscript (Landini, 2001) shows that it is consistent (in form and
structure) with natural language: proponents of hoax theories are hence obliged to explain why
a forger would consider it necessary to invest much time and effort in generating statistically-
sound gibberish. The statistics do not correlate with any specific Indo-European language:
Currier (1976) demonstrated the presence of two distinct languages in the text and concluded
that the manuscript is the work of multiple scribes, which rules out many of the previous
theories for authorship.

If the Voynich manuscript is a genuine document, then there are several possible ways of
interpreting the text. The eminent American cryptanalyst William F. Friedman, who undertook

28Barlow (1986) claims that the manuscript is a forgery by Wilfrid Voynich himself. However, recently discovered
evidence of ownership of the manuscript before 1665 (Zandbergen, 2004) scuppers this theory.

29A contemporary example is Dwight Mackintosh (1906 – 1999), “the boy who time forgot”, who was institution-
alised for most of his adult life. Upon his release in 1978, he conveyed his visions through thousands of surreal
drawings, which attracted considerable attention from the art world.

30This is reminiscent of the “Bible Code” techniques, which have been applied to religious texts to extract
“predictions” of historical and current world events. Quite aside from their statistical fallacies, these techniques
can be applied to other texts to produce similar results: see http://cs.anu.edu.au/~bdm/dilugim/moby.html
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the earliest computerised studies of the manuscript in the 1940s and 50s, believed that the text
was written in an early form of artificial language. A related theory is that the manuscript is
encrypted using a simple substitution or transposition cipher31. However, this hypothesis is
implausible, since the text has withstood the attacks of prominent cryptanalysts for almost a
century (Rugg, 2004). An advanced method of encipherment is highly unlikely, because the
manuscript text matches the statistical profile of natural language. It is more reasonable to
suppose that that the manuscript is encoded; however, without access to the codebook, this
cannot be verified.

Recent work by Rugg (2004) demonstrates a method of generating nonsense text with similar
properties to natural language by means of a modified Cardan grille cipher. The grille cipher
was known in the Elizabethan era, but establishing a connection with the Voynich manuscript
is tentative and has been the subject of dispute. Schinner (2007) has applied statistical measures
to the Voynich manuscript, showing that the text could have been created by a stochastic
process similar to Rugg’s method. These results lend credence to the hoax hypothesis and
could be seen to substantiate the Kelley theory.

1.4.3 The Zodiac Killer Messages

The self-titled “Zodiac” was a serial killer who operated in the Bay Area of San Francisco
in the late 1960s. It is known that, between December 1968 and October 1969, the Zodiac
murdered five persons and wounded two others; the total number of his victims may be
greater32 (Belfield, 2006). Despite an extensive police investigation, the Zodiac was never
caught and his identity remains a mystery.

In a series of letters to the San Francisco press, the Zodiac taunted the authorities for their
failure to apprehend him and threatened more murders unless certain demands were met33.
Four of these messages contain cryptograms, three of which remain unbroken to this day:

The 408-symbol cryptogram was sent (in three parts) to the local newspapers in July 1969.
Within days, it was solved by amateur cryptanalysts Donald and Bettye Harden, who
determined that a homophonic substitution had been used for frequency suppression.
The decrypted text is a disturbing insight into the mind of the Zodiac, which details
his motivation for murder. The last 18 letters of the deciphered message spell out
“EBEORIETEMETHHPITI”, for which no convincing explanation has yet been produced.

The 340-symbol cryptogram was mailed to the San Francisco Chronicle in November 1969 (Fig-
ure 1.7) and has never been solved conclusively. It features a similar layout and set of
glyph forms as the 408-symbol cryptogram, and possesses a related statistical profile34.

The “My name is. . . ” and “Button” messages were received in April and June 1970 respectively.
These messages contain short cryptograms. The former (13 symbols) proports to contain
the Zodiac’s identity; in the latter (32 symbols), the Zodiac claims to describe the location
of his next planned attack (which was not carried out). Neither cryptogram comprises
enough text for effective cryptanalysis and their content remains unknown.

These letters (and the solved 408-symbol cryptogram) are riddled with spelling errors, most
of which appear to be intentional. This may be a ploy to frustrate the efforts of code breakers.

31If the modern dating of the manuscript is correct, then it must precede the introduction of the polyalphabetic
cipher (Section A.3).

32The Zodiac is suspected of carrying out several other unsolved murders between 1963 and 1970. He personally
claimed a death toll of 37 in his final letters, but some of these may be copycat killings.

33Most of the letters start with “This is the Zodiac speaking. . . ” and all contain his “signature”: a circle with a cross
drawn through it, resembling the crosshairs of a rifle sight.

34A statistical breakdown of the 340-symbol cryptogram is available at http://www.dtm.ciw.edu/chris/z/z2stats.html.
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Figure 1.7: The unsolved 340-symbol Zodiac cryptogram.

Clearly, the Zodiac intended his ciphers either to be breakable – as evidenced by the solved
cryptogram – or to lead investigators on a wild goose chase. In recent years, the mystery has
attracted the attention of many amateur detectives, driving some to the point of obsession.

1.4.4 The Potential of a Novel Approach to Cryptanalysis

The cryptograms discussed in Section 1.4 represent a worthwhile target for cryptanalysis;
indeed, the extraction of meaningful plaintext from any of these cryptograms would constitute
a major achievement. Furthermore, a complete solution would attract considerable interest
from outside the cryptographic community.

As stated earlier, many people have attempted to break these cryptograms using conven-
tional cryptanalysis techniques, but none have succeeded in producing a conclusive solution.
Assuming that these cryptograms are indeed breakable, this raises the possibility that an origi-
nal method of cryptanalysis offers a better chance of success for attacking these cryptograms.
This topic is revisited in Section 6.5.
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2 Cryptanalysis as an Optimisation Problem

This chapter introduces an approach to cryptanalysis that is capable of automatically breaking classical
ciphers. Existing work related to this area is reviewed and placed in context.

2.1 Motivation for Automated Cryptanalysis

It was established in Section 1.3 that classical cryptanalysis techniques work by analysing the
statistical features of a ciphertext and exploiting them to recover the plaintext. However, these
techniques often rely on a human element – ingenuity, or sheer luck – which is not conducive
to mechanisation. Furthermore, many cryptanalytic methods are limited to breaking specific
classes of cipher and thus cannot be applied if the means of encipherment is unknown.

Research into automated cryptanalysis started in the late 1930s, with the development of the
“Bombe” machines to break the “Enigma” encryption used by the German military forces in
the Second World War. In 1948, with the embryonic development of the electronic computer in
progress, Alan Turing hypothesised that cryptanalysis would be an ideal task for a “thinking
machine” (Hodges, 1992). Since then, computing power has revolutionised both cryptography
and cryptanalysis.

The simplest and crudest method of automated cryptanalysis is exhaustive search, which
systematically checks each key in the (finite) keyspace until a plausible decryption is found. On
average, for a keyspace of size Z, this “brute force” process will require Z/2 evaluations before
identifying the correct key. Therefore, it is suitable for breaking trivial ciphers but woefully
unsuited for attacking cryptosystems with large keyspaces: assuming a 26-letter alphabet,
even a simple substitution cipher has vastly more possible keys than could ever be exhausted
by enumeration, given the computing resources available now and for the foreseeable future1.

However, if the proportion of the keyspace to be searched (for a particular ciphertext) can
be drastically reduced by applying an appropriate heuristic, then exhaustive search over the
remainder of the keyspace may become viable. Hence, in the words of Bauer (1997):

The exhaustion attack, although by itself alone rather insignificant, is in combination
with other, likewise automatic attacks, the fundamental method of intelligent cryptanalysis.

For any substitution or transposition function, making a “small” change to the key (such as
exchanging two elements) will result in a related (slightly different) encryption. In other words,
there is a discernible relationship between the key and the ciphertext or, in the terminology of
Shannon (1949), a low level of confusion. From this simple observation, it follows that keys that
are nearly correct give rise to decryptions that are nearly correct (Clark, 2003) and, hence, an
approximation of the exact key is sufficient to extract readable plaintext.

2.2 Combinatorial Optimisation Problems

The goal of optimisation is to find an optimal (best possible) solution for a specified problem,
by minimising (or maximising) an objective function f over the set S of all candidate solutions
(the solution space) to the problem. Combinatorial optimisation is concerned with the domain
of optimisation problems in which the set of feasible solutions is discrete.

1Modern cryptosystems are explicitly designed to have huge keyspaces, making exhaustive search intractable.
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Definition 2 (Blum and Roli, 2003)
A combinatorial optimisation problem P = (S, f ) can be defined by:

• a set of variables X = {x1, . . . , xn};

• variable domains D1, . . . , Dn;

• constraints among variables;

• an objective function f to be minimised, where f : D1 × · · · × Dn → R+;

The set of all possible feasible assignments is

S = {(x1, v1), . . . , (xn, vn)} | vi ∈ Di and s satisfies all the constraints}

The optimal solution set S∗ ⊆ S may contain multiple (equally optimal) solutions s∗:

S∗ = {s∗ | f (s∗) ≤ f (s) for all s ∈ S}

Most “interesting” instances of the combinatorial optimisation problem – such as the
travelling salesman problem – are classed as NP or NP-hard: in other words, no polynomial-
time algorithm is known2 that finds the exact optimal solution in all instances of the problem.
Hence, for sizable problem instances, it is often impractical to use exact algorithms (which
guarantee to find the best possible solution) and, instead, one must resort to approximation
algorithms to obtain solutions of adequate quality (Clark, 1998).

A heuristic is a rule for selecting the “most desirable” solution from a set of alternatives.
Heuristic search algorithms, which comprise a class of approximation algorithms, represent
a trade-off between the processing time required to obtain a solution and the quality of that
solution (with respect to the optimum). The heuristic is employed to reduce the proportion of
the solution space to be searched, but ideally retaining an optimal solution.

Heuristics are typically problem-specific and, often, the process of devising an appropriate
heuristic for a particular problem is not straightforward. This lack of generality in heuris-
tic search has motivated the development of metaheuristic3 search strategies, starting with
simulated annealing (Kirkpatrick et al., 1983).

Metaheuristic search algorithms – discussed in Section 2.4 – are suitable for solving a wide
class of optimisation problems; indeed, the challenge is to choose and adapt an existing
“off-the-shelf” metaheuristic to a particular problem, rather than developing a specialised
metaheuristic from scratch (Gendreau and Potvin, 2005).

Informally, metaheuristics are “high level strategies for exploring search spaces by using different
methods” (Blum and Roli, 2003). A variety of metaheuristic algorithms have been proposed
and, due to their diversity, it is difficult to provide a more concise general definition.

2.3 Fitness Functions for Cryptanalysis

A fitness (or cost) function is a scalar-valued measurement of the optimality of a solution
to a maximisation (or minimisation) problem4. The fitness measure is closely related to the
objective function over the solution space: often, a scaling factor is applied to the raw objective

2The discovery of an algorithm for solving NP-class problems in polynomial time would be equivalent to a proof
of P = NP . Conversely, if P 6= NP , no such polynomial-time algorithm exists (Cook, 2000).

3The term “metaheuristic”, introduced by Glover (1986), combines the Greek meta (“beyond”) and heuriskein (“to
find”), implying a more abstract level of search.

4Strictly speaking, fitness functions yield higher values for better solutions, whereas cost functions yield lower
values for better solutions, but the terms are used interchangeably.
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values. If the exact objective function is unknown or impossible to define, a good fitness
function will find an approximation of the relative quality of each candidate solution.

In the context of cryptanalysis, a cost function evaluates the suitability (“fitness”) of a
candidate key for a given ciphertext. The design of most classical ciphers ensures a smooth
search landscape: a key that is correct in most of its elements will yield mostly correct decrypts
(Section 2.1). The target key – which results in the correct decipherment – should be awarded
a minimal cost, corresponding to the global optimum in the search space5.

A common strategy for evaluating the fitness of a candidate key is to derive a statistical
profile from the decrypted text, which is then compared with a “reference” profile extracted
from a corpus of sample text: the closer the statistics match, the lower the key cost.

This method is only effective when the corpus material possesses a similar profile to the
plaintext content, so the corpus must be selected carefully, taking into account the (assumed)
language and style of the plaintext. However, Jakobsen (1995) indicates that, in cases where a
large amount of ciphertext is available, the corpus statistics need only approximate those of
the plaintext.

2.3.1 Gram Statistics

The general form of cost functions in the literature, as described by Clark and Dawson (1997),
is a weighted linear sum of unigram, bigram and trigram statistics (Equation 2.1). For each
n-gram6 x in the plaintext, the observed (decrypted text) frequency Dn

x is subtracted from the
expected (corpus material) frequency Kn

x . The sum of absolute differences is a measure of the
closeness between the observed and expected statistics:

Cost(k) = α ∑
i∈A

∣∣∣Kuni
(i) − Duni

(i)

∣∣∣+ β ∑
i,j∈A

∣∣∣Kbi
(i,j) − Dbi

(i,j)

∣∣∣+ γ ∑
i,j,k∈A

∣∣∣Ktri
(i,j,k) − Dtri

(i,j,k)

∣∣∣ (2.1)

The weightings assigned to unigram, bigram and trigram differences – that is, the values of
α, β and γ – are typically determined by experimentation. Changing the relative value of a
weight (or other components of the cost function) will affect the evaluation of decrypted texts
and, consequentially, alter the search dynamics.

Giddy and Safavi-Naini (1994) report that the introduction of normalisation7 for each n-gram
considerably improves recognition of valid decryptions:

Cost(k) = α
∑i∈A

∣∣∣Kuni
(i) − Duni

(i)

∣∣∣
Kuni

(i)
+ β

∑i,j∈A

∣∣∣Kbi
(i,j) − Dbi

(i,j)

∣∣∣
Kbi

(i,j) + ε
+ γ

∑i,j,k∈A

∣∣∣Ktri
(i,j,k) − Dtri

(i,j,k)

∣∣∣
Ktri

(i,j,k) + ε
(2.2)

It should be noted that some forms of n-gram analysis are unsuitable for cryptanalysing
particular types of cipher. A transposition operation does not change the letters of a text, so
the unigram frequencies of a plaintext are preserved in the corresponding ciphertext. Thus, no
useful information can be inferred from analysing the unigrams; instead, one must consider
the relationships between letters, which leads to bigram and trigram analyses.

As shown by Figure 2.1, the unigram weighting α should not exceed β or γ, otherwise the
cost function’s performance will be reduced severely. However, the weight values may be
changed as the search progresses: the method outlined by Jakobsen (1995) is – in effect – to
identify a key with optimum unigram frequencies and then to incrementally modify this key
with respect to bigram statistics.

5This is rarely the case in practice, because the target plaintext is unlikely to match exactly the statistical profile
that guides the search.

6An n-gram is a unit of text (a group of consecutive letters) of length n (Subsection 1.3.1).
7The ε term is a small value introduced to prevent division by zero when Kn

x = 0.
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Figure 2.1: Results for cost functions with varying weights, where α + β + γ = 1. Reproduced
from Clark (1998).

Clark (1998) compares the performance of three cost functions based on unigram, bigram
and trigram frequencies exclusively, to cryptanalyse a simple substitution cipher. The results
(Figure 2.2) show that, although trigram statistics are most effective (above a threshold amount
of ciphertext), the benefit of using trigrams instead of bigram statistics is minimal.
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Figure 2.2: Comparative performance of cost functions using only unigrams, bigrams and
trigrams, respectively. Reproduced from Clark (1998).

The calculation of trigram statistics is far more computationally expensive than the cal-
culation of bigram statistics8, so the fitness functions given in the literature are typically
limited to analysing unigrams and bigrams for efficiency. However, related keys correspond to
decryptions with similar statistics, and Jakobsen (1995) describes how this property can be
exploited to reduce the complexity of re-calculating the n-gram frequencies by a factor of n.

8For an alphabet of size k, there are kn possible n-grams: ie. for English, 26 unigrams, 262 = 676 bigrams
and 263 = 17576 trigrams. (These are upper bounds: the total number of bigrams and trigrams which occur
in English text are somewhat lower.) Thus, the number of comparisons required between all observed and
expected n-grams is exponential in n.
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2.3.2 Counting Specific Bigrams and Trigrams

In contrast to statistical analysis of n-grams, Matthews (1993) defines a fitness function that
awards “points” for each occurrence of specific bigrams and trigrams (Table 2.1) in a decryption.
This method works well for breaking a columnar transposition cipher, because a decryption
that scores highly is strong evidence that most of the columns are lined up correctly. To prevent
“over-fitting” the statistics, decryptions that contain the trigram ‘EEE’ (unknown in English)
are penalised by the deduction of points9.

However, this method is not suitable (by itself) for cryptanalysing substitution ciphers
because, in the best case, it will correctly identify only those letters that appear in the set of
point-scoring bigrams and trigrams, but will not provide any feedback about other letters.

Bigram / Trigram TH EE IN ER AN ED THE ING AND EEE
Point score +2 +1 +1 +1 +1 +1 +5 +5 +5 −5

Table 2.1: Scoring system for bigram and trigram occurrences, developed by Matthews (1993).

2.3.3 Detecting Dictionary Words

The dictionary heuristic – described by Russell et al. (2003) – detects the presence of plaintext
sub-strings (words) in a decrypted text and rewards the decryption accordingly. This heuristic
is based on the reasoning that, if a complete word is recognised in a decryption, there is a high
probability that those elements of the key which correspond to the word are correct. (This idea
is loosely related to the “cribbing” procedure outlined in Subsection 1.3.3.)

Formally, the dictionary heuristic is defined by Russell et al. (2003) as:

Dict(k) =
1
L ∑

d
d2Nd

where L is the length of the ciphertext and Nd is the number of dictionary words of length d
that are present in the decrypted text that corresponds to key k.

Many incorrect keys will – purely by chance – result in spurious decryptions that contain
recognisable words10. Given a decryption that contains a whole word, the probability of
the word occurring in the plaintext increases with the length of the word11, so the effect of
spurious decryptions can be curtailed by considering dictionary words above a certain length.

By boosting the fitness score of decryptions that contain recognisable words, the dictionary
heuristic provides the search with an incentive to preserve those elements of the key which
are (believed to be) correct. As Russell et al. (2003) point out, a small modification to a
partially-correct key may destroy a long and high-scoring word, causing sharp jumps between
the fitness scores of related keys and thus disrupting the continuity of the search space.
Since metaheuristic techniques are only efficient for traversing a “smooth” search space, the
dictionary heuristic should hence be used in combination with other heuristics, in order to
“smoothen out” the disruptions in the search space.

9The trigram ‘EEE’ is unknown in English words, yet three consecutive ‘E’s may appear from the conjunction of
two words, such as “foresee events”.

10For example, a ciphertext “AMJB” encrypted with the Caesar cipher may be decrypted to either “cold” or
“frog” with equal validity. Without knowledge of the context of the ciphertext, one cannot distinguish between
these alternative decryptions.

11The minimum ciphertext length required to ensure an unambiguous decryption (in all cases) is known as the
unicity distance. The unicity distance of a cryptosystem is proportional to its complexity (Bauer, 1997).
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2 Cryptanalysis as an Optimisation Problem

2.4 Cryptanalysis by Metaheuristic Search

The cryptanalysis of classical ciphers has been formulated as a combinatorial optimisation
problem in the literature. A study of various metaheuristic search techniques was conducted
by Clark (1998), who concludes that “optimisation heuristics are ideally suited to implementations
of attacks on the classic ciphers”.

It is evident that traversing the keyspace by moving between related keys will result in a
gradual transition between decrypts. However, unlike many problems to which optimisation
approaches have been applied, the globally optimal key (with the highest fitness score) need
not correspond to the correct decryption, due to the approximating nature of the fitness
function. This is corroborated by Giddy and Safavi-Naini (1994), who state that:

Most failures to decrypt correctly were the result of the global minimum not being the
correct decipherment. [. . . ] The simulated annealing algorithm finds the global minimum,
but this minimum does not necessarily represent the correct decipherment.

It is important to note that optimisation-based techniques do not constitute a “silver bullet”
for breaking cryptosystems, let alone for solving hard problems in general. A potent illustration
is the application of genetic algorithms to knapsack ciphers, as originally performed by
Spillman (1993). This topic has received much attention in the literature (Garg and Shastri, 2007;
Kolodziejczyk, 1997; Lebedko and Topchy, 1998), even after Clark et al. (1996) demonstrated
that the attacks proposed are suitable only for cryptanalysis of trivially-sized (“toy”) knapsacks
and that, in practice, it is doubtful whether they are capable of scaling up to realistic knapsack
problems (Clark, 2003).

2.4.1 Local Search Techniques

A local search algorithm explores the search space S by progressively moving between
candidate solutions (states) in S . The set of states reachable from a current state s is defined
by its neighbourhood:

Definition 3 (Blum and Roli, 2003)
A neighbourhood structure is a functionN : S → 2S that assigns to every s ∈ S a set of neighbours
N (s) ⊂ S . N (s) is called the neighbourhood of s.

Hill-climbing search

Hill-climbing search (also known as iterative improvement) is a simple and efficient form of
local search. Starting with an initial state x0, the immediate neighbourhood of the current
state xn is sampled. The search “moves” to a successor state xn+1 ∈ N (xn) (which must be an
improvement on xn) according to a user-defined heuristic. Two commonplace heuristics are:

Simple (weak) hill-climbing: select any y ∈ N (xn) given that y is fitter than xn.

Steepest gradient ascent: compare all states in N (xn) with xn and then select the fittest.

Both of these heuristics will terminate when a locally optimal state is reached, because a
transition to a state of lower fitness is never accepted. To reach the global optimum xopt, there
must exist a “chain” of improving moves from the initial state to xopt. Hence, the performance
of hill-climbing is strongly dependent on the definition of the fitness and neighbourhood
functions and the initial state (Blum and Roli, 2003).

Jakobsen (1995) uses a hill-climbing approach to solve substitution ciphers. An initial
key guess k is constructed from unigram analysis of the ciphertext. Two elements of k are
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2.4 Cryptanalysis by Metaheuristic Search

Algorithm 1 Pseudocode for simple hill-climbing search.
x ← start state x0
repeat

y← an unvisited state in N (x)
if Cost(y) < Cost(x) then

x ← y {accept improving moves}
else

reject y
end if

until all nodes in N (x) evaluated
return x {better than all states in neighbourhood}

exchanged12 to form k′, which is evaluated according to bigram fitness (Equation 2.3). If
Cost(k′) < Cost(k), then k is replaced by k′, otherwise k′ is discarded. The process is repeated
until Cost(k) has not improved for a number of iterations.

Cost(k) = ∑
i,j∈A

∣∣∣Kbi
(i,j) − Dbi

(i,j)

∣∣∣ (2.3)

Since the initial k is biased towards the unigram frequencies of expected language, this
method will encounter difficulties should the actual plaintext possess an irregular frequency
distribution (Subsection 1.3.1).

Examining the results presented by Jakobsen (1995), the effectiveness of hill-climbing in
recovering the correct key does not appear to be competitive with that of simulated annealing
(Forsyth and Safavi-Naini, 1993) and genetic algorithms (Spillman et al., 1993). This may be
attributed to the nature of hill-climbing search, which terminates once a locally optimal solution
is reached, whereas other metaheuristic techniques will continue the search, potentially finding
a better (or even the globally optimal) solution.

Simulated annealing

Simulated annealing is a probabilistic local search algorithm that mimics the annealing
process13 in metallurgy. Modelled on the statistical thermodynamics of metals (Metropolis
et al., 1953), simulated annealing was first presented by Kirkpatrick et al. (1983) to solve the
combinatorial optimisation problem.

The underlying principle of simulated annealing is that, in order to “escape” from local
optima, it is necessary to move to a solution of poorer quality. The probability of accepting a
worsening move decreases as search progresses. (Improving moves are always accepted.) This
distinguishes simulated annealing from hill-climbing and, in the general case, increases the
likelihood that search will reach the globally optimal solution.

The Metropolis acceptance criterion (Equation 2.4) governs the probability that a worsening
move is accepted, in a manner dependent upon a “temperature” parameter T. For a minimisa-
tion problem, the relative quality of a move from s to s′ is measured as ∆E = Cost(s′)−Cost(s)
and, as ∆E→ ∞, the less likely it is to be accepted. When T is large, virtually all moves are
accepted, resulting in a “random walk” of the search space. As T → 0, almost all worsening

12Jakobsen (1995) stores the elements in a vector ordered by frequency. Elements which are close together (those
with similar frequencies) are exchanged in preference to those further apart.

13Annealing alters the properties of a metal, such as its strength and hardness. The metal is heated to a certain
temperature (its annealing point) then allowed to cool slowly, so that the particles may rearrange to reach their
ground state – a highly structured lattice.
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2 Cryptanalysis as an Optimisation Problem

Algorithm 2 Pseudocode for simulated annealing. (Adapted from Clark (2002).)
x ← start state x0
T ← initial temperature T0
repeat

for i = 1 to N do
y← an unvisited state in N (x)
∆E = Cost(y)− Cost(x) {minimise ∆E}
if ∆E ≤ 0 then

x ← y {always accept improving moves}
else if E < U(0, 1) then

x ← y {probabilistically accept worsening moves}
else

reject y
end if

end for
T ← T × α {reduce T}

until stopping criterion is met
return best state recorded

moves are rejected14, forcing the search to converge towards an optimal solution.

P(s⇒ s′) =

{
exp

(−∆E
kT

)
if ∆E > 0

1 otherwise
(2.4)

After search at temperature Tn has evaluated N states, T is reduced in accordance with
a “cooling schedule” and the search continues at the lower temperature Tn+1. The cooling
schedule has a major impact on the performance of simulated annealing (Blum and Roli, 2003):
if T is reduced too quickly, search will fail to convergence to the global optimum. To prevent
premature convergence – yet produce a solution in reasonable time – it is commonplace to use
a geometric scaling model, such as Tn+1 = Tn × α, where 0 < α < 1. Other cooling methods,
such as logarithmic scaling, may be used instead.

In the literature, simulated annealing has been used to cryptanalyse simple substitution
ciphers (Clark, 1998; Forsyth and Safavi-Naini, 1993) and transposition ciphers (Giddy and
Safavi-Naini, 1994). Given a sufficient quantity of ciphertext, the algorithm performs well:
Giddy and Safavi-Naini (1994) state that “a success rate of at least 80% can be obtained if the ratio
of the cipher length to the cipher period (c/n) is at least 20.”

2.4.2 Global Search Techniques

What differentiates global search techniques from local search methods is that a population of
candidate solutions (“individuals”) is maintained, rather than a single solution (Blum and Roli,
2003). This enables the exploration of multiple regions of the solution space at once. As search
progresses, the population is incrementally refined over a series of generations and eventually
converges towards an optimal solution.

Genetic algorithms

Genetic algorithms (GAs) were initially developed by John Holland in the 1970s and subse-
quently popularised by David Goldberg in the 1980s.

14If T = 0, there is no possibility of accepting a worsening move; the process reduces to hill-climbing (Forsyth and
Safavi-Naini, 1993).
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2.4 Cryptanalysis by Metaheuristic Search

The inspiration for GAs is borrowed from nature; specifically, the processes of natural
selection acting on a population of organisms. Individuals that possess favourable traits
are more likely to survive in their environment and, therefore, to reproduce. The genetic
material responsible for these traits will be inherited by their offspring and, consequently, will
proliferate throughout the population (Dawkins, 1986).

Algorithm 3 Pseudocode for a simple genetic algorithm.
Pop← initial population of (randomly-generated) individuals
repeat

rank all individuals in Pop according to fitness
parents← probabilistically select n best-ranking individuals in Pop for reproduction
for pairs of individuals in parents do

children← apply crossover operator to parent pair with probability pc
apply mutation operator to children with probability pm
replace lowest-ranking individuals in Pop with children

end for
until stopping criterion is met
return individual with highest recorded fitness

Starting from a population of randomly-generated individuals, a GA repeatedly applies
three evolutionary operators – selection, crossover and mutation – to evolve the population:

Selection: The selection operator probabilistically chooses individuals from the population
for reproduction. Selection carries an element of bias, such that high-fitness individuals
have a greater likelihood of being chosen than individuals of lower fitness. Hence, the
selection filter reflects the concept of “survival of the fittest”.

Dozens of selection methods – each with particular characteristics – have been devised
by researchers. Of these, tournament selection is regarded as being particularly efficient
(from a computational perspective) and, as such, is often favoured for use.

Crossover: A crossover operator takes genetic material from two or more individuals, which
is recombined to produce new “child” individuals. By rearranging genetic material in
this way, crossover provides search with the ability to explore the solution space.

Mutation: A gene mutation operator alters an individual’s chromosome in some “small” way.
Hence, mutation introduces variability into a population (Michalewicz, 1996).

The performance of a GA is particularly sensitive to the choice of parameters; in particular,
the probability that a selected individual will be subjected to mutation or crossover:

• If the probability of gene mutation (pm) is too low, then insufficient variability is intro-
duced into the population, causing the population to “stagnate” at a local optimum.
Conversely, if pm is too high, any mutation that improves an individual’s fitness will
rapidly be cancelled out by subsequent mutations, essentially reducing the evolutionary
process to random search. Typically, pm is set to a value between 0.001 and 0.1.

• If the probability of crossover (pc) is too low, the search will not explore the solution
space effectively, resulting in premature convergence of the population. High values of
pc, in the order of 0.9, are suitable for most optimisation problems.

The choice of other parameters – including the population size (number of individuals)
and the number of generations to be computed – represent a trade-off between the portion
of the solution space that is explored (and, hence, the quality of the best solution found) and
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2 Cryptanalysis as an Optimisation Problem

the amount of processing required to execute the GA. For any optimisation problem, some
experimentation with the GA parameters is often necessary to obtain the best results.

Genetic algorithms have been regularly used to attack classical ciphers15, with modest
population sizes and generations. The results quoted by Spillman et al. (1993) indicate
that approximately 1,000 individuals are required to find the exact key for a ciphertext (of
unspecified length) encrypted by simple substitution. Similarly, when Matthews (1993) applied
the GA to a 181-letter text encrypted by columnar transposition, good approximations of the
correct key were found within 3,000 candidate key evaluations.

2.5 Critical Observations

It is difficult to compare the relative performance of metaheuristic techniques described in the
literature, due to the variability of numerous factors:

Choice of fitness function: as established in Section 2.3, the characteristics of a fitness function
will affect the trajectory of search.

Some fitness functions appear suboptimal: Giddy and Safavi-Naini (1994) criticise the
lack of normalisation in the function used by Forsyth and Safavi-Naini (1993). The
rationale of other functions is unclear: Spillman et al. (1993) propose a cost function
in the spirit of Equation 2.1, but the sum of absolute differences is divided by four
“to reduce sensitivity to large differences” and then raised to the eighth power “to amplify
small differences”, without further justification. However, Clark (2002) suggests that
experimentation with such “fiddle factors” is often necessary to obtain good results.

Choice of algorithm parameters: as discussed in Section 2.4, the choice of parameters for an
algorithm has a considerable effect on the algorithm’s performance and, hence, the
quality of results produced. Different parameter values are used in different papers,
making direct comparison of results impossible.

Selection of sample ciphertexts: several papers (Jakobsen, 1995; Spillman et al., 1993) only
present results for a single sample of ciphertext. The exact ciphertext material (or its
source) is rarely specified. In addition, attacks on ciphertexts written in languages other
than English are not considered, although experiments with different styles of language
are performed by Forsyth and Safavi-Naini (1993).

Selection of corpus material: the characteristics of n-gram statistics are dependent on the text
source from which they are extracted. Forsyth and Safavi-Naini (1993) acquire a set of
“expected” n-gram frequencies from UNIX manuals; their results show that, for short
ciphertexts (< 3000 letters), correct decryptions are obtained only if the language style of
the plaintext is similar to that of the corpus material.

Availability of computational resources: the exponential increase in processing speed and mem-
ory capacity has facilitated the development, over the years, of more ambitious meta-
heuristic search techniques. Results quoted in later papers were produced using faster
computers; evidently, computational-dependent metrics (such as an algorithm’s run-time)
are unsuitable for drawing comparisons between metaheuristics.

Variability of experimental runs: the results presented in many papers are averages taken from
a number of algorithm runs. With the exception of Matthews (1993), most papers omit
additional details, such as the variance between runs. Notably, Matthews (1993) compares

15Papers describing the use of GAs for cryptanalysis of classical ciphers include Spillman et al. (1993), Matthews
(1993), Bagnall (1996), Clark and Dawson (1997) and Clark (1998), amongst others.
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the quality of the decrypts obtained by his genetic algorithm implementation against
those achieved by undirected (random) search.

Unfortunately, few of the researchers who present original cryptanalytic techniques
evaluate their work against the results achieved in previous publications. This is under-
standable for the earlier-published papers; however, some of the later publications – such
as Jakobsen (1995) – do not show even an awareness of previous work.

Perhaps for these reasons, there is little in the way of comparative studies of the effectiveness
of different metaheuristic techniques for cryptanalysis. One study, performed by Clark (1998),
evaluates attacks based on simulated annealing, genetic algorithms and tabu search, concluding
from experimental results that “each of the algorithms performed (approximately) as well as the other
with regard to the ultimate outcome of the attack”. This may not be a matter for surprise, due to
the relative simplicity of the ciphers attacked (Bagnall, 1996; Clark, 2002).

Clark (1998) provides results which show that, for cryptanalysing a simple substitution
cipher, a genetic algorithm requires considerably greater computational resources than either
simulated annealing or tabu search. This is to be expected, because implementations of GAs
incur overheads in processing and maintaining a population of solutions, whereas local search
methods work with only a single solution at a time.

Metaheuristic techniques have also been applied to cryptanalyse “hard” cryptosystems,
which fall outside the domain of classical cryptography. Of particular interest is the work
of Bagnall et al. (1997), who use a genetic algorithm to successfully cryptanalyse a triple
rotor machine (a complex form of polyalphabetic cipher). When the attacks were repeated
using either simulated annealing or hill-climbing as the search algorithm, most runs failed
to identify the target key (Bagnall et al., 1997). This implies that particular metaheuristics
are better suited than others to certain cryptanalysis problems. It remains an open question
whether population-based metaheuristics offer greater potential than local search techniques
for cryptanalysis of complex ciphers.

Statement of Intent

The existing research covered in this chapter shows that optimisation-based approaches are
eminently suitable for attacks on classical ciphers. However, it is apparent that all previous
efforts have been geared towards cryptanalysing specific types of substitution and transposition
ciphers, rather than classical ciphers in general.

In order to pursue further research into the application of optimisation techniques for
automated cryptanalysis, this project shall focus on constructing a cryptanalysis tool intended
to be suitable for attacks on all forms of classical ciphers.
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3 Project Objectives

This chapter outlines the goals of the project, which are developed in subsequent chapters. An appro-
priate strategy for software development is selected and justified.

3.1 Motivation for Project

As discussed in Chapter 2, the utility of metaheuristic techniques for cryptanalysis of classical
ciphers has been convincingly demonstrated by previous research.

However, in light of the factors discussed in Section 2.5, it is evident that relevant areas of
interest have not been adequately explored by existing work. Other topics that merit detailed
investigation include the following:

Text evaluations: the majority of published work has relied on n-gram frequency analysis
(or variations thereof) as the sole means of evaluating the validity of a decryption. By
incorporating other heuristics for natural language recognition into the fitness function,
the search algorithm will be better equipped to distinguish correct (and partially correct)
keys from incorrect ones. This may prove beneficial for attacks on ciphers that are
exceptionally difficult to break using frequency analysis alone.

Attacks on complex ciphers: the work described in earlier publications is geared to attacks on
simple substitution or transposition ciphers. Little attention has been given to more
complex kinds of classical ciphers, such as polyalphabetic substitution ciphers (such as
rotor machines) and product ciphers. These are somewhat more difficult to break and,
therefore, pose an excellent challenge for new cryptanalysis techniques.

Language considerations: cryptanalysis of non-English ciphertexts has received virtually no
attention in the reviewed literature. Facilities to support languages other than English
are a prerequisite for performing effective attacks on ciphertexts written in unknown
dialects, such as the Dorabella cipher and the Voynich manuscript (Section 1.4).

To address these topics, the author considers that a new investigation into the potential of
automated cryptanalysis of classical ciphers by metaheuristic search is justified.

3.2 Project Deliverables

The deliverables proposed for the project are as follows:

1. To identify and implement a generic model of the components and operation of various
kinds of classical cipher systems.

2. To design and build a software tool for the automated cryptanalysis of ciphertexts
encrypted with classical ciphers, using metaheuristic techniques to search the keyspace.
(In other words, given a ciphertext and cipher specification, the tool shall attempt to
reconstruct the corresponding plaintext and cipher key.)
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3. To construct a “front-end” user interface for the aforementioned cryptanalysis tool,
incorporating facilities to encrypt and decrypt texts with user-provided ciphers, and to
monitor the progress of a decryption when cryptanalysis is taking place.

4. To evaluate the abilities of the completed cryptanalysis tool, by running tests on a
representative set of sample ciphertexts. Should the tool succeed in recovering the correct
plaintexts, then attacks on unsolved cryptograms (described in Section 1.4) shall be
attempted as a further avenue of investigation.

3.3 Choice of Software Development Model

A large portion of the project – the construction of the cryptanalysis tool – may be viewed as
an exercise in software engineering. In keeping with good engineering practice, an appropriate
software development process should be selected and followed.

Since the amount of time available for the completion of the project is limited, emphasis must
be placed on achieving the project deliverables, rather than adhering to a rigid and formalised
structure of work. This rules out the waterfall and spiral models of software development
(along with all “heavyweight” development methodologies) and, instead, necessitates the
selection of an “agile” model.

Agile software development methods are characterised by a focus on delivering working
software and responding to unexpected problems as they occur (Fowler and Highsmith, 2001).
One of the earliest (and most popular) agile methods is extreme programming (XP), which
may be described as the amalgamation of four basic activities: coding, testing, listening and
designing (Beck and Andres, 2004).

The XP style will be adopted for the development phase of the project, with the goal of
building a feature-complete cryptanalysis tool within the aforementioned time constraints.
However, some of the practices associated with XP – specifically, pair programming and
the “customer representative” role – are inappropriate to the nature of this project and will,
therefore, be omitted.

3.4 Use of Existing Software Libraries

Using pre-built components to construct new software products is accepted wisdom in the field
of software engineering. This practice of software reuse is advantageous to the development of
the tool, for the following reasons (Sommerville, 2001):

Accelerated development: less time will be required to integrate existing components within
the tool than to design, implement and test the equivalent functionality from scratch.

Effective use of specialist knowledge: software built by domain experts is expected to provide
sophisticated functionality, which could not otherwise be emulated within the time
constraints of the project.

Increased reliability: few issues are likely to arise with well-tested “off-the-shelf” components.

For these reasons, the tool shall, where possible, incorporate functionality provided by
existing libraries and frameworks, in preference to “reinventing the wheel”. However, it cannot
be expected that all aspects of functionality can be delivered from pre-built components alone.
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In this chapter, the proposed structure of the tool is described and justified. Particular emphasis is
given to those aspects which represent an advancement on existing work.

4.1 Architecture of Tool

A software architecture describes the structure and components of a system at a high level of
abstraction, encompassing “the software elements, the externally visible properties of these elements,
and the relationships between them” (Bass et al., 2003).

4.1.1 Choice of Architectural Style

The internal organisation of the tool is modelled on the layered architectural style. The
separation of functionality into distinct layers simplifies the task of designing and building the
tool, as the details of each layer can be worked out in isolation.

Grouping related components of functionality into layers allows information hiding: the
implementation details of each layer cannot be accessed by the layers above, which restricts
the communication between layers to well-defined interfaces. The advantage of this approach
is that modifications localised to one layer will not propagate to the higher layers; indeed, an
entire layer may be replaced with another without necessitating any alterations to other layers,
provided that the interface between layers remains unchanged.

A disadvantage of layered architectures is the introduction of latency into the system
implementation, as modules in different layers cannot interact directly, but must instead
communicate across the interfaces between layers (Bass et al., 2003). However, for a small-scale
project, the reduction in system performance is minimal and the gains in software simplicity
and maintainability are more than compensatory.

4.1.2 Overview of Tool Architecture

The architecture of the tool is divided into three broadly-defined layers to maximise conceptual
clarity1. The role of each layer is as follows:

Cipher layer: supports the encryption and decryption of texts; defines a mechanism for the
construction of ciphers and compatible keys.

Cryptanalysis layer: defines a collection of heuristics to recognise the properties of natural
language in a decrypted text; provides facilities for the automated cryptanalysis of
ciphertexts using metaheuristic optimisation techniques.

Control layer: provides a “front-end” interface to the functionality of the cipher and cryptanal-
ysis layers; coordinates the user’s interactions with the tool.

A pictorial view of the tool’s architecture is shown in Figure 4.1. The function and purpose
of the components in each layer, from bottom to top, is described in the following sections.

1Whilst it is possible to further decompose the identified layers to obtain a finer level of granularity, the addition
of extra layers obscures the conceptual focus of the architecture.
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4.2 Cipher Layer

Figure 4.1: The hierarchy of software layers which constitute the tool’s architecture. (The
dashed lines indicate dependencies between components.)

4.2 Cipher Layer

4.2.1 Text Services

An alphabet is a collection of letters. For the purposes of this model, the definition of a
letter is relaxed from conventional usage, in that a letter may stand for any symbolic “unit
of information” present in a communication medium. This facilitates the construction of
alphabets containing any number of letters – such as the (non-standard) letter-forms used in
the cryptograms described in Section 1.4 – without resorting to obscure ASCII-like coding
schemes.

Figure 4.2: The relationship of a message to symbols, letters and an alphabet.

A message is composed of letters taken from a single alphabet, together with other non-letter
symbols, such as spacing and punctuation. (The distinction between letters and non-letters is
important to a substitution cipher, which may change only the letters in a message, leaving the
non-letters unaltered.) A message may represent either a plaintext or a ciphertext.
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4.2.2 Cipher Model

Functions and Pipelines

A text function is a self-contained unit, which may represent any type of substitution or
transposition operation, or any other conceivable form of text transformation. It follows that
many (but not all2) text functions require a key parameter to specify the exact encryption or
decryption rule (Subsection 1.1.1) to be followed.

Text functions may be chained together to build a cipher pipeline (Figure 4.3). A cipher
pipeline can encapsulate any number of functions, allowing the construction of all ciphers that
can be expressed as a composition of substitution and transposition operations. (In effect, a
cipher pipeline models the structure of a product cipher.)

To encrypt a message, each function in the pipeline is applied in turn: the ciphertext
produced by one function is piped into the next function as plaintext. Similarly, to decrypt a
message, the functions are inverted and applied in reverse order.

Figure 4.3: An example of a cipher pipeline that encloses three text functions.

The advantage of modelling ciphers as pipelines of functions is that a wide variety of ciphers
can be constructed and investigated by using only a small number of generalised substitution
and transposition functions. This approach is preferable to building each cipher individually,
which would lead to duplication of work.

Key Structures

It was shown in Section 1.2 that a key for a classical cipher may be expressed as an indexed
sequence of letters or digits. For simple substitutions and transpositions, the sequence must
be a permutation over a set of elements: each element may occur once only in the sequence.
However, many notable variations of these ciphers – including the Vigenère and Playfair
ciphers – expect a keyword (of variable length and without the permutation restriction) to
be specified instead. Still other forms of cipher, such as Caesar substitution and rail-fence
transposition, require a single integer as the key.

To accommodate these different concepts of a key, each individual definition is implemented
as a distinct key structure3. A key structure encapsulates key data (the representation of the key)
and conforms to a standard interface, supporting the retrieval and modification of the key
data in a uniform manner.

The properties inherent in the definition of a key are enforced by the key structure itself: for
example, if the key is required to be a permutation, then no operation on the key data that
violates the permutation property will be permitted. Furthermore, modelling keys separately
from ciphers enables custom search operators can be defined for individual key structures, as
discussed in Subsection 4.3.2.

2An example of an un-keyed text function, which has exactly one encryption rule, is the “reversal” operation.
3For implementation reasons to be discussed later, a universal “one size fits all” key structure is not suitable.
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4.3 Cryptanalysis Layer

As discussed in Section 2.4, optimisation by metaheuristic search is a powerful technique for
the automated cryptanalysis of classical ciphers. However, the full potential of this approach
can only be realised by careful design of the fitness function and the search operators.

4.3.1 Evaluation of Decrypts

The fitness function combines two measures of the optimality of a decrypted text:

• at the letter level, the normalised n-gram statistical model (Subsection 2.3.1) is used
to minimise the difference between the decryption and a reference corpus, in terms of
unigram, bigram and trigram frequencies. This heuristic is chosen in preference to
the “point-scoring” scheme proposed by Matthews (1993), which is only suitable for
transposition ciphers (as explained in Subsection 2.3.2).

• at the word level, the dictionary heuristic (Subsection 2.3.3) is used to maximise the
number of recognisable words that occur in the decryption. Besides the work performed
by Russell et al. (2003), the inclusion of this heuristic into the fitness function has not
been attempted in earlier work.

These measures may be combined to form a weighted cost function of the form

Cost(k) = w1x1 + w2x2 + . . . + wnxn

where the xi terms are the decryption scores and the wi terms are the associated weights.
The relative importance that should be ascribed to each measure will be determined by
experimenting with the values of the weights. (As the score of the dictionary heuristic is
maximal for correct decryptions, the weight associated with this heuristic will be negative.)

Initially, only the n-gram measures will guide the search process, progressively steering
towards candidate keys containing a majority of correct key elements4. The dictionary heuristic
cannot be expected to provide any assistance here, because the occurrence of recognisable
words in decryptions with few correct key elements will be merely coincidental.

Once a key with a significant number of correct elements has been reached, it should be
possible for the dictionary heuristic to identify some recognisable words in the corresponding
decryption. Thereafter – and with the guidance of both heuristics – it is expected that search
will be successful in deriving the remainder of the target key and extracting a complete and
correct decryption.

4.3.2 Identification and Design of Search Operators

A metaheuristic can only effectively explore a problem space if the search operators reflect the
properties inherent in the solution space. In the context of classical ciphers, small changes to
a key equate to small changes in the fitness score (Section 2.1). To exploit this property, the
search operators should be designed to facilitate transitions between similar keys.

Cipher pipelines that contain two or more text functions (i.e. product ciphers) will necessarily
require the specification of multiple subkeys to perform a decryption. From the perspective of
the optimisation algorithm, search is performed over a single keyspace, which is formed by
composing the “sub-keyspaces” associated with each individual function in the pipeline.

4The probability of successfully identifying a key with a significant number of correct elements is highly dependent
on the cipher’s complexity. (Figure 2.2 indicates that approximately 150 ciphertext letters are sufficient to
correctly identify 15 (of 27) key elements for a simple substitution, using bigram or trigram analysis alone.)
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In order to carry out an investigation into the relative merits of different optimisation
techniques for cryptanalysis, the tool shall be engineered to support a variety of metaheuristic
algorithms as interchangeable components. Since many well-known metaheuristics rely solely
on the mutation and crossover operators, it is necessary to define versions of these operators
that are compatible with each type of key structure.

Mutation Operator

The mutation operator is an essential component of many local5 and global optimisation
techniques. To support the major classes of key structure – sequences and keywords – two
different mutation operators are adopted, which are defined as follows:

Swap mutation: two elements in the sequence are selected and swapped. For example, a swap
mutation on the sequence 〈1, 2, 3, 4〉 might yield the sequence 〈1, 4, 3, 2〉.
This operator does not require knowledge of the domain of the elements in the sequence.
Furthermore, the elements themselves are not modified; if the sequence is a permutation,
then swapping two elements is guaranteed to preserve the permutation property.

Point mutation: a letter in the keyword is selected and changed to another letter in the alphabet.
For example, the keyword “house” may be mutated to “horse” or “mouse”.

This operator is better suited for keyword-type key structures than swap mutation,
because the letters of the keyword can be changed individually, providing search with
the potential to reach every possible n-letter keyword.

Many variations of these operators are possible: for instance, Jakobsen (1995) adapts swap
mutation to exchange elements in close proximity to each other, in preference to elements that
are located further apart. For the sake of generality, these variations are eschewed, but could
easily be incorporated within the key structures if desired.

Crossover Operator

A crossover operator is required by some evolutionary metaheuristics, such as genetic algo-
rithms. The role of crossover is to combine the elements of multiple parent sequences in some
manner, whilst preserving some characteristics of each parent.

Two common forms of the crossover operation are “one-point” and “two-point” crossover.
One-point crossover is generally regarded to be inferior to two-point crossover in most
situations (Michalewicz, 1996). Many other methods of crossover have been proposed in the
literature6; however, the two-point crossover operator is adopted here, due to its simplicity.

Figure 4.4: A visual representation of the two-point crossover operator. (The dotted lines mark
the crossover points.)

5For the purposes of local search techniques, the neighbourhood N of a state s is equivalent to the set of states
which may be obtained by executing a single mutation on s.

6These operators include – but are not limited to – multi-point, adaptive, segmented, shuffle and uniform
crossover (Michalewicz, 1996).
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To perform two-point crossover, a pair of crossover points are selected, then the blocks of
elements in each parent sequence that lie between the crossover points are exchanged. As
shown in Figure 4.4, the resulting child sequences bear a resemblance to each of their parents.

Care must be taken when performing crossover on permutation sequences, since elements
of parents cannot be exchanged indiscriminately whilst maintaining the permutation property
in the children. In order to resolve this problem, the crossover operator must be revised.

An adaption of two-point crossover that respects the permutation property is partially-mapped
crossover (PMX). There are many small variations in the definition of the PMX operator in
the literature (Eiben and Smith, 2003) and, unfortunately, most of these variants are poorly
documented. The version of PMX described here is taken from Michalewicz (1996).

Figure 4.5: A step-by-step visual representation of the PMX operator.

The elements that lie between the crossover points define a series of mappings between
pairs of elements: in the example shown in Figure 4.5, these are 2↔ 3, 3↔ 5 and 4↔ 1. To
execute PMX on a sequence, each mapping pair is applied in turn: that is, the two elements
corresponding to the mapping pair are located in the sequence and swapped. The resulting
children thus inherit characteristics of their parents, but retain the permutation property.

4.4 Control Layer

The control layer provides two “front-end” interfaces for accessing the facilities of the cipher
and cryptanalysis layers:

User interface: a user-accessible suite for carrying out the following activities:

• constructing custom ciphers from pre-defined text functions.
• encrypting and decrypting arbitrary texts according to specified ciphers and keys.
• running (and monitoring) automated cryptanalysis on user-provided ciphertexts.

Batch interface: to supervise cryptanalysis runs without user intervention. This interface is
intended for experimental purposes and to evaluate the capabilities of the tool.

The control logic serves to bridge the “front-end” interfaces with the “back-end” cipher and
cryptanalysis layers. To avoid the unnecessary duplication of code, it supplies the functionality
common to both interfaces.
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5.1 Choice of Development Language

The following criteria were considered to be significant towards the choice of development
language for implementing the cryptanalysis tool:

Maturity: established languages are usually well-documented and, in addition, many boast
sophisticated third-party development tools to assist the software development process.

Object orientation: is a powerful programming paradigm, which elevates the conceptual model
of a program to a higher level of abstraction than that offered by procedural languages.
Object-oriented (O-O) languages remove many of the “accidental difficulties” (Brooks,
1995) of programming, as they deliver modularity (by encapsulation) and re-usability
(by polymorphism and inheritance).

Run-time performance: metaheuristic search is a computationally intensive process and will
constitute the bulk of processing performed by the tool. To maximise the tool’s run-time
performance, the program code should be compiled to native machine code.

Programmer expertise: for any new software project, choosing an implementation language
in which the developers have little (or no) previous experience carries an element of
risk, because substantial amounts of time and resources must be invested in acquiring
familiarity with the language. It is therefore advisable to select a language in which one
is already competent, unless sound reasons can be given for doing otherwise.

Integration with existing software: as stated in Section 3.4, the reuse of existing software li-
braries in the tool is considered beneficial to the development process. To simplify the
task of interfacing the tool with these libraries, the tool development language should be
compatible with existing library code.

The author has experience with numerous O-O development languages, but claims expertise
only with Java and Python, having acquired familiarity with these languages in previous
programming projects. Both Java and Python are considered to be mature languages; as such,
either would be suitable for implementing the tool.

It is well known that a program compiled to native machine code will yield considerable
run-time performance gains over an equivalent interpreted program. Early versions of the Sun
Java compiler1 were criticised for poor performance, but this deficiency has been corrected
in more recent versions of the Java compiler, to the extent that “there is rarely any significant
performance difference between native C++ and Java applications” (Mangione, 1998).

However, the same claims cannot be made for the mainstream Python implementation,
which is a byte-code interpreter, rather than a compiler. Consequently, Java programs can
usually be executed an order of magnitude faster than interpreted Python code (Nystrom,
2007). The relatively poor performance of Python is considered a significant drawback to its
adoption for this project, due to the aforementioned processing requirements of metaheuristic
algorithms. Hence, Java is selected as the implementation language for the tool software.

1Java code is typically pre-compiled to Java virtual machine (JVM) byte-code and then translated to native machine
code at run-time, in a process known as “just-in-time” (JIT) compilation. For the purposes of this project, Java is
considered a compiled language.
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5.2 Choice of Development Tools and Software Libraries

The following freely-available software development tools were selected for the purposes of
implementing the cryptanalysis tool:

Development environment: an integrated development environment (IDE) is a suite of applica-
tions designed to assist the software development process. Judicious use of the facilities
of an IDE will increase programmer productivity and thus enhance the quality of the
resulting software product.

Eclipse is an extensible (and highly customisable) IDE with comprehensive support for
Java development. In addition, Eclipse features a sizable library of “plug-in” tools, which
are targeted to various aspects of the development process.

Unit testing: in keeping with the extreme programming method (Section 3.3), a suite of unit
tests will be created to validate individual modules. As part of regression testing, the
unit tests will be re-run after each modification to the code-base, to catch any unintended
regressions in program functionality.

The de facto standard for unit testing in Java is the JUnit framework, which is therefore
adopted for the project.

Version control: a version control system (VCS) is a tool to manage and track changes to
source code. Whilst the primary purpose of a VCS is to synchronise a code-base between
multiple developers, it is still advantageous to deploy a VCS in a single-person project, to
maintain backups of the code-base and, should the need arise, to restore earlier versions
of modules.

The VCS selected for the software development is Subversion. (This choice is made
purely on the basis of the author’s personal experience with Subversion; many other
VCS tools would be equally suitable for the purposes of the project.)

Furthermore, the ECJ and SWT software libraries are used to implement major areas of tool
functionality, as described in Subsection 5.3.5 and Subsection 5.3.6 respectively.

5.3 Implementation Details

5.3.1 Text Services

The conceptual text model outlined in Subsection 4.2.1 is reified to provide the tool with
functionality to store and manipulate plaintexts and ciphertexts.

The Symbol, Letter and Alphabet classes are direct mappings to their counterparts in the
conceptual model. These classes are immutable: their contents are fixed at initialisation and
cannot be changed subsequently.

A Message encapsulates a private list of Symbol (and Letter2) objects; individual symbols
may be retrieved or changed with the getSymbol and setSymbol operations. (The methods
toString and setText are required by higher-level modules to support I/O operations on
messages, such as loading messages from text files.)

An alternative implementation of the text model would use Java’s built-in char and string
types to directly represent message texts. This approach would probably be more efficient
(in terms of memory usage) than the chosen implementation, but lacks the flexibility to
define custom alphabets and, hence, cannot capture the distinction made between letters and
non-letters in Subsection 4.2.1.

2Since a letter is a special type of symbol, the Letter class inherits the properties of Symbol.
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Figure 5.1: A UML representation of the text classes, which builds on Figure 4.2.

5.3.2 Ciphers and Functions

The Cipher class implements a “cipher pipeline” of Function objects. When an instance of Cipher
is called to encrypt or decrypt a Message object, a copy3 of the message is passed through each
function in the cipher pipeline in sequence (as described in Subsection 4.2.2). The transformed
message is then returned.

Figure 5.2: A UML representation of the components in the cipher model.

The encrypt and decrypt operations of the Function class perform in-place transformation
on Message objects: the symbols of the message text are overwritten with the transformed
symbols. This avoids the overhead of initialising a new Message object for each function in the
pipeline, thus improving run-time efficiency.

Text functions may be classified as being either substitutions or transpositions. All substitu-
tion functions operate according to the same principle – as do all transposition functions – so
the common characteristics of each type of function are implemented separately as (abstract)

3The Message is copied to ensure that the original text is still available after encryption or decryption.
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classes conforming to the Transformer interface (Figure 5.3). This approach promotes reusability
and avoids the unnecessary duplication of code in each Function implementation.

Figure 5.3: The trio of implementations of the Transformer interface.

Each Transformer class provides a generic implementation of the encrypt and decrypt
methods. This reduces a Function definition to specifying the encipher and decipher
methods required by the transformer:

• The Substitution transformer operates on a “symbol-by-symbol” basis. When the encrypt
method is called with a Message as its argument, each individual letter in the message is
extracted and passed to the encipher method: this returns the equivalent ciphertext
letter, which replaces the original letter in the message.

Substitution functions which operate on fixed-size blocks of symbols (polygraphic sub-
stitution) extend the SubstitutionBlock transformer, whose encipher and decipher
methods map between symbol blocks in a similar manner.

• The Transposition transformer works in terms of the index positions of symbols. To
encrypt a message of length N, each symbol index in the range 1..N is passed into the
encipher method, which returns the corresponding index of the symbol in the cipher-
text. The symbols of the message are then reordered accordingly, with the assistance of a
buffer to hold temporarily-displaced symbols.

Whilst all functions must conform to the Function interface, each function class extends an
implementation of the Transformer interface – Substitution, SubstitutionBlock and Transposition.
The relationship of several Function classes to these transformers is shown in Figure 5.4.

Figure 5.4: A taxonomy of Function classes implemented for the tool.

41



5 Implementation and Testing

Functions that require a key parameter are distinguished by the KeyedFunction interface.
Since there are different types of keys, the type of Key object required by a KeyedFunction must
be specified as a class parameter by the function declaration.

5.3.3 Key Structures

The Key interface defines a set of operations for accessing the key data that is stored within
a key structure. Hence, each of the multiple key structures identified in Subsection 4.2.2
corresponds to a Key implementation.

Figure 5.5: The hierarchy of Key classes.

Since many of the key structures share a similar design, their implementations are organised
in a class hierarchy, as shown in Figure 5.5. Two base “styles” of key structure are identified:

Mappings: The Mapping class4 represents a relation between a “domain” set of discrete ele-
ments and a “range” set. Internally, the map structure is implemented as a hash table,
which permits retrieval of elements in O(1) time (Cormen et al., 2001).

Substitution keys that map a plaintext alphabet to a ciphertext alphabet are implemented
as subclasses of Mapping. The Bijection class enforces a one-to-one mapping – as required
by simple substitution – whereas the Relation class allows elements to be mapped to sets
of elements (and is, therefore, suitable for homophonic substitution).

The Mapping class provides an invert method, since the decryption key may be obtained
by simply inverting the encryption mapping (and vice versa).

Sequences: The Sequence class (and subclasses) represent keys whose elements are indexed by
their “position” in the key, as is commonplace for transposition ciphers.

The Keyword class is specialised for sequences of Letter objects by using point mutation
(Subsection 4.3.2) and serves as the key for various polyalphabetic substitution functions.

The mutate and crossover methods implement the evolutionary operators described in
Subsection 4.3.2. These methods are deterministic: each accepts two integer values, which are
internally translated to the parameters for the operation to be carried out5. (These values are
generated in the cryptanalysis layer.)

4In mathematics, the term “mapping” is synonymous with “function”; however, the former word is used here, to
avoid confusion with the Function class.

5To perform PMX crossover on Mapping keys, the range elements are treated as a permutation, with the domain
elements as the corresponding indexes.
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Figure 5.6: The relationships between several Function and Key implementations.

5.3.4 Evaluation of Decrypts

A MessageEvaluator measures the degree of resemblance between a decrypted Message text
and the characteristics of natural language; this evaluation is expressed as a numerical score.
Hence, an implementation of MessageEvaluator is analogous to a fitness measure.

A collection of MessageEvaluator instances (with associated weight values) may be grouped
together by a Combiner class – itself an implementation of MessageEvaluator – which simply
applies each evaluator to a decrypt and sums the weighted scores.

In addition to Combiner, two MessageEvaluator classes are implemented:

• The FrequencyAnalysis evaluator calculates the normalised n-gram difference statistic for
a message text. The data sources of the “expected” n-gram frequencies are separated by
gram size; hence, to model the unigram, bigram and trigram components of the fitness
function, three separate FrequencyAnalysis instances are created.

• The WordMatcher evaluator calculates the “dictionary heuristic” score (Subsection 2.3.3)
for a message text. (A machine-readable word list6 is used as the dictionary source.)

Upon its initialisation, the WordMatcher constructs a “trie” data structure (Figure 5.8) to
store the dictionary of words in a compact format which permits linear-time lookup of
individual words. To evaluate a Message, the Aho and Corasick (1975) string-matching
algorithm7 is applied (together with the trie of words) to extract the words present in the
message text in a single pass.

The fitness function described in Subsection 4.3.1 is realised as a Combiner containing
instances of the FrequencyAnalysis and WordMatcher evaluators. A CombinerFactory class is
used to generate Combiner instances that correspond to a user-provided CombinerParameters
object, which simply holds a set of weight values.

The flexibility of this model allows the user to define fitness functions tailored to different
styles of ciphertext: for example, the FrequencyAnalysis class may be initialised with a corpus
of n-gram statistics suitable for a particular language, or an additional WordMatcher instance
may introduced to recognise specialist vocabulary in decrypted texts.

6The “SCOWL 5desk” English word list is available at http://wordlist.sourceforge.net/
7The choice of an established algorithm – as opposed to devising a custom string-matching algorithm – reflects

the preference for reuse of existing techniques, as stated in Section 3.4.
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Figure 5.7: The implementations of the MessageEvaluator interface.

Figure 5.8: An example “trie” data structure, containing the strings ‘cat’, ‘cup’, ‘map’ and ‘mat’.
(Word terminals are denoted by square nodes; non-terminals by circles.)

5.3.5 Cryptanalysis Engine

Existing Implementations of Optimisation Algorithms

It was stated in Subsection 4.3.2 that the cryptanalysis layer of the tool should support a selec-
tion of metaheuristic search algorithms. To save time and resources, existing implementations
of these algorithms are adapted and integrated with the tool, instead of coding each individual
algorithm from scratch.

The open-source Evolutionary Computation for Java (ECJ) toolkit (Luke, 2007) includes “off-
the-shelf” implementations of many evolutionary metaheuristics, including genetic algorithms
and evolutionary strategies. ECJ is “designed to be highly flexible”: almost all functionality in the
toolkit can be extended (or overridden) to accommodate any special requirements (McIntyre
et al., 2004). Unfortunately, the documentation8 for ECJ is rather sparse, but the author has
acquired experience of using ECJ in a previous project.

The design of ECJ is targeted to population-based metaheuristics and, consequently, ECJ
does not support local search methods. Hence, a generic Java implementation9 of simulated
annealing (with minor modifications) was used to perform experiments with local search.

Searching the Keyspace

The Cracker class (Figure 5.9) is the central facility for coordinating the cryptanalysis of
ciphertexts. This helps to keep the cryptanalysis and control layers separate, by abstracting
(hiding) the implementation details of the cryptanalysis layer from the control layer.

8Documentation for ECJ is available at http://www.cs.gmu.edu/~eclab/projects/ecj/docs/
9Mark Ramirez’s BSD-licenced implementation of simulated annealing: http://www.mrami.com/~mrami/public/
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Before a Cracker instance can commence the cryptanalysis of a ciphertext, the ciphertext
itself must be specified (by setting the appropriate field in Cracker), together with an initialised
Cipher object, in order to obtain candidate decryptions of the ciphertext. Other parameters,
such as the choice of optimisation algorithm and the respective weights of each component of
the fitness function, may also be specified.

The Cracker class implements the Java Runnable interface, allowing a cryptanalysis run to
be executed in parallel with other parts of the tool. The progress of a running Cracker can be
monitored by subscribing to the cracker’s associated EventRelay object, which provides event
notification in the style of the standard “observer” design pattern (Gamma et al., 1995).

Figure 5.9: The Cracker class and associated classes.

Since the optimisation algorithms of ECJ expect the fitness function to yield higher scores for
“better” decryptions, the raw fitness evaluation of a candidate key (as given by the cost function
f ) is adjusted to a value in the closed interval [0, 1] according to the formula Adj f = 1

1+ f .
The KeyFactory class provides an “abstract factory” service (Gamma et al., 1995) to generate

randomised Key objects and, as such, is employed by population-based optimisation algorithms
to create an initial population of candidate keys (or, in the case of local search, the initial
“key state”). To cater for the multiple Key implementations, several KeyFactory subclasses are
needed, as shown in Figure 5.10.

Figure 5.10: The KeyFactory class and its subclasses.

5.3.6 User Interface

Choice of User Interface Toolkit

At present, the two most common types of user interface are the graphical user interface (GUI)
and the web-based user interface (accessed through a web browser). Since it is expected that
the cryptanalysis tool will be used on a local workstation, the GUI model is preferred.

A GUI toolkit is a set of reusable graphical elements (“widgets”) for the construction of user
interfaces. There are two mainstream GUI toolkits available for Java, which are as follows:
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Swing is a platform-independent GUI framework based on the model-view-controller (MVC)
pattern. The “look and feel” of Swing widgets is independent of the host platform.

Standard Widget Toolkit (SWT) was conceived by the Eclipse project as an alternative to Swing.
The SWT widget library is a portable interface to the GUI widgets of the underlying
desktop environment: this enables SWT applications to take the “native” appearance of
the host platform.

The relative technical merits of Swing and SWT are a matter of on-going debate10. However,
it is generally accepted that SWT is more resource-efficient than Swing and, furthermore,
the SWT API is regarded as being somewhat easier to learn than the MVC architecture of
Swing (Scarpino et al., 2004). For these reasons, SWT was selected as the GUI toolkit for
implementing the tool front-end.

Design of the User Interface

Screenshots of all the windows displayed by the tool are located in Appendix B.

The user interface is split across multiple windows. Each window provides access to a
portion of the underlying functionality of the tool. Upon starting the tool, the main window
(Figure 5.11) is presented to the user; the other windows can be accessed from the “Tools”
menu displayed at the top of the main window.

The main window is divided into two panes: the upper “source” pane contains a user-
editable text display, with the corresponding encrypted (or decrypted) text displayed in the
(read-only) lower “view” pane. An ASCII-formatted text file may be loaded from disk to be
displayed in the source pane; similarly, the contents of the view pane can be saved to a file.

Figure 5.11: The main window of the tool’s user interface.

The user can select the cipher to be used from a drop-down list of pre-defined ciphers,
which is accessed by clicking the “Set Cipher” button. Alternatively, the “Cipher Constructor”
dialog window (Figure B.1) may be invoked to define a custom cipher pipeline. Functions may

10A discussion of the different “design philosophies” of Swing and SWT is given by Scarpino et al. (2004).
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be added, removed or reordered in the pipeline and, by selecting a function, the key parameter
for the function is displayed (and can be changed).

The cryptanalysis facilities of the tool are accessible from the “Cracker Configuration”
window (Figure B.2), from which the weights of each component of the fitness function may be
set. Cryptanalysis is started by clicking the “Run Cracker” button, upon which the “Cracker
Monitor” window (Figure B.3) is launched, to display the progress of the cryptanalysis run.

5.4 Summary of Software Testing

As befitting the agile methodology of software development, the following testing activities
were undertaken in parallel with the tool’s construction:

Unit testing: a suite of unit tests was written to cover each class in the cipher and cryptanalysis
layers. (The control layer was omitted from unit testing, because it is generally accepted
that user interfaces do not lend themselves well to automated testing practices.)

Naturally, unit tests written for higher-level components must assume the correctness
of lower-level modules. This is acceptable, since those lower-level modules will already
have been extensively unit tested.

Integration testing: each layer of the tool (Subsection 4.1.2) was constructed and tested sepa-
rately, in a “bottom-up” fashion: that is, the cipher layer was built first, followed by the
cryptanalysis layer and, finally, the control layer.

It should be stated that integration testing revealed some flaws in the interfaces between
classes, which required rectification. (The implementation described in Section 5.3 reflects
the final version of the tool.)

System testing: was performed by applying the completed tool to a set of sample ciphertexts,
in order to identify (and resolve) any deficiencies present in the tool’s construction that
were overlooked in unit and integration testing.

The process of system testing is somewhat related to evaluating the tool’s capabilities;
hence, the experimental work reported in Chapter 6 may be viewed as a continuation of
system testing.
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This chapter explores the capabilities of the completed cryptanalysis tool. Suitable weights for the fitness
function are identified by experimenting with a simple substitution cipher. The efficacy of the tool is
investigated by attacking a variety of classical ciphers. Attempts are made to cryptanalyse the unsolved
cryptograms described in Section 1.4.

6.1 Choice of Fitness Function

Following on from the discussion in Subsection 4.3.1, the fitness function is a weighted
combination of the unigram, bigram, trigram and dictionary heuristic measures:

Cost(k) = α · uni(k) + β · bi(k) + γ · tri(k)− δ · dict(k)

For short ciphertexts, only a small fraction of all possible bigrams and trigrams will occur in
a decryption. Hence, an important optimisation1 is introduced for the n-gram measures: only
those n-grams which occur in a decrypted text are counted and compared with the reference
n-gram frequencies, instead of performing comparisons for all possible n-grams.

This practice reduces the computational complexity of n-gram analysis – from polynomial-
time (in n) to linear-time (in the amount of ciphertext) – and significantly improves the run-time
performance for evaluating a decryption (especially for trigram analysis). The accuracy of the
fitness function is not adversely affected, since the penalty incurred by a decryption for failing
to match the omitted n-grams is intuitively reflected in the disparity between the frequencies
of the n-grams present in the decryption and the respective expected frequencies.

6.2 Calibrating the Evaluation Measures

Since each evaluation measure operates independently of the others, it is necessary to scale the
scores produced by each measure, so that, when applied to a decrypted text, equally-weighted
measures will produce roughly equal scores.

A selection of 10 English literary works (non-copyrighted, or copyright expired) were sourced
from the Project Gutenberg2 catalogue, to be used as natural language “training” material.
Each chosen text is written in a different style of language, which leads to variations in the
statistical profiles of the texts.

The unigram, bigram, trigram3 and dictionary measures were applied individually to
evaluate each text in the training set. The results (reported in Table 6.1) indicate that each
measure produces reasonably consistent evaluations across the training set, as evidenced by
the low standard deviations of the scores. Notably, the variations between texts are insufficient
to distort their statistical profiles beyond what is recognisable as natural language text.

In the following experiments, the raw scores produced by each evaluation measure for each
decryption are divided by the measure’s mean score from Table 6.1, to scale the evaluation
measures to a common range. This ensures that no measure has a disproportionate effect upon
the combined fitness score of a decryption.

1This technique is not described in any paper reviewed in Chapter 2 and therefore appears to be original.
2The online Project Gutenberg book library is available at http://www.gutenberg.org/catalog/
3These measures were initialised with n-gram statistics extracted from an unrelated corpus of English texts.
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Scores of Evaluation Measures
Title of Text Unigram Bigram Trigram Dictionary
20,000 Leagues Under the Sea † 4.73 212.87 1967.77 3.02
Alice’s Adventures in Wonderland 6.79 232.14 2026.79 2.17
Dr. Jekyll and Mr. Hyde 6.40 248.25 1900.19 2.69
Hamlet 5.62 255.11 2057.49 2.24
Oliver Twist 6.50 254.48 2166.17 2.62
Pride and Prejudice 5.77 249.32 1953.47 3.05
Robinson Crusoe 6.61 256.40 1985.34 2.41
The Adventures of Tom Sawyer 8.21 262.41 2134.29 2.46
The Prince † 4.46 204.82 1773.71 3.05
Ulysees 6.03 269.64 2460.74 2.72

Mean Evaluation Score (µ) 6.11 244.54 2042.60 2.64
Scaled Standard Deviation (σ/µ) 0.1754 0.0870 0.0906 0.1233

Table 6.1: Raw evaluation scores produced by each measure when applied to a sample set of 10
English literary texts. (The † denotes texts translated from their original language.)

6.3 Identifying Optimal Weights for the Fitness Function

For the cryptanalysis tool to achieve successful decryptions, it is necessary to “tune” the
fitness function by identifying appropriate weight values for each evaluation measure. This is
accomplished by trialling a range of values for a weight (the independent variable) over a set
of sample ciphertexts; the quality of the resulting decryptions is the dependent variable.

6.3.1 Experimental Method

The sample plaintexts are the first chapters of each of the 10 literary works listed in Table 6.1,
from which all punctuation and spacing is removed to harden the task of cryptanalysis4.
The ciphertext material was obtained by encrypting the sample plaintexts with a simple
substitution cipher, using the key shown in Figure 1.1.

Since the training material (the sample plaintexts) is known, the correctness of a decryption
key is quantified by counting the number of elements in the key which are set correctly. This
metric provides an objective measure of a decryption’s quality and thus reflects the suitability
of the corresponding weight value. Hence, the value found to consistently produce the most
correct decryptions shall be selected as the optimal value for the weight.

A standard genetic algorithm was selected as the optimisation technique for this experiment.
A set of GA control parameters suitable for cryptanalysis (Table 6.2) were identified by
preliminary investigation of the tool during its development5.

Number of generations: 50 Population size: 200
Probability of mutation (pm): 0.4 Selection method: Tournament (size 12)
Probability of crossover (pc): 0.9 Elite individuals: 0 (no elitism)

Table 6.2: Control parameters selected for the genetic algorithm.

The choice of tournament selection is expedient for the purposes of this experiment, as this
selection method is insensitive6 to the absolute values of the fitness scores. Therefore, it is only

4The deletion of non-letters from ciphertexts is standard practice in classical cryptography (Subsection 1.3.3).
5The high value of pm reflects the probability of a single mutation to each candidate key, instead of a mutation of

each single element within each key.
6Tournament selection considers the rank of individuals in a population, rather than their relative fitness scores.
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6 Experimentation with the Tool

necessary to experiment with the ratios between weights, eliminating the need to investigate
the magnitude of each individual weight.

Due to the randomisation properties inherent in metaheuristic search, multiple cryptanalysis
runs will produce decryptions of varying quality. To compensate for the effects of these
fluctuations, the cryptanalysis of each sample ciphertext is repeated 3 times7 for each weight
value. From these runs, the best decryption achieved (as measured by the number of correct
letters) is selected as representative for the weight value; the other runs are disregarded8.

6.3.2 Performance of Individual Measures

In order to determine the baseline performance of each n-gram measure, cryptanalysis runs
were carried out using three fitness functions, consisting solely of unigram, bigram and trigram
measures respectively.
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Figure 6.1: Performance of fitness functions comprising only a single n-gram measure.

The results obtained (Figure 6.1) correlate with those presented by Clark (1998) (reproduced
in Figure 2.2, see page 22), which indicates that the tool is working correctly. However, there
is some disparity between these two sets of results: in particular, the trigram-only fitness
function exhibits significantly better performance than the bigram-only function, whereas this
divergence is rather less pronounced in Figure 2.2. These differences may be attributed to
factors such as the nature of the ciphertext material9, the exact n-gram reference statistics and
the choice of algorithm parameters.

For the bigram-only and trigram-only fitness functions, the correctness of decrypts improves
for longer ciphertexts, as is expected for frequency analysis (Subsection 1.3.1). Contrary to
expectations, the performance of the unigram-only fitness function remains flat regardless of
the amount of available ciphertext, which implies that unigram statistics alone are unsuitable
as a general heuristic for cryptanalysis.

6.3.3 Unigram and Bigram Weights

To determine whether there is any advantage to be gained by combining the unigram and
bigram measures, fitness functions with positive values of α and β are trialled and compared
with the performance of the bigram-only fitness function. The test hypotheses as follows:

7The author is aware that a greater number of cryptanalysis runs for each ciphertext would increase the reliability
of results. However, time and resource constraints precluded further processing.

8This method is closely related to the experimental approach described by Clark (1998).
9As stated in Subsection 6.3.1, spacing and punctuation are removed from the ciphertexts, whereas they are

retained by Clark (1998).
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6.3 Identifying Optimal Weights for the Fitness Function

Null hypothesis H0: the combination of unigram and bigram measures is not an improvement
on the bigram measure alone.

Alternative hypothesis H1: the combination of unigram and bigram measures yields signifi-
cantly better performance than the bigram measure alone.
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Figure 6.2: A comparison of the performance achieved by different values of β, respective to α.
(The bigram-only fitness function is included for reference.)

The probability distribution of these results is unknown and (without extensive analysis)
cannot be presumed to follow a normal distribution. Hence, a non-parametric test statistic
(which does not require assumptions regarding the probability distribution of a data set) must
be used. Since the results are paired, the Wilcoxon signed-rank test is used, with tests conducted
at the 5% significance level.

The test statistic is calculated by comparing the results obtained for each value of β against
those of the bigram-only fitness function. (As befitting the Wilcoxon signed-rank test, equal
emphasis is placed on the performance scores for each increment of ciphertext.)

Amount of Ciphertext (letters) Test Statistic
α β 100 200 300 400 500 600 700 800 900 1000 p h
0 10 5.6 7.8 8.1 10.7 15.2 15.1 17.2 14.4 18.8 17.8 - -
10 10 4.8 8.4 10.2 12.5 14.2 14.5 16.4 15.6 16.6 16.3 0.8457 0
10 20 6.6 8.5 9.5 11.2 13.7 12.8 17.3 16.9 16.5 16.6 0.9219 0
10 40 6.1 9.5 8.9 14.1 13.8 16.2 16.5 15.5 15.3 18.1 0.4766 0
10 60 5.3 7.8 11.0 13.1 16.1 15.0 15.3 15.5 17.5 18.4 0.4961 0
10 80 6.0 7.5 7.8 13.0 13.9 15.0 15.1 15.0 19.5 20.5 0.5391 0

Table 6.3: Mean numbers of correct key elements identified for different values of α and β.

From Figure 6.2 and Table 6.3, it appears that high α : β ratios have no significant effect on
the performance of cryptanalysis. This may be attributed to the “coarseness” of the unigram
statistics.

Assigning greater importance to the bigram measure (with larger values of β) yields
somewhat better performance, but does not surpass the performance of the bigram-only
fitness function. Hence, the null hypothesis H0 has not been disproved, so the unigram
measure is omitted from the fitness function in subsequent experiments.
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6 Experimentation with the Tool

6.3.4 Bigram and Trigram Weights

As shown in Figure 6.1, both the bigram and trigram measures are independently capable of
achieving good decryptions. A similar experiment is performed to determine whether these
measures can be combined to yield better decryptions than trigram statistics alone. Again, the
test hypotheses are as follows:

Null hypothesis H0: the combination of bigram and trigram measures is not an improvement
on the trigram measure alone.

Alternative hypothesis H1: the combination of bigram and trigram measures yields signifi-
cantly better performance than the trigram measure alone.
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Figure 6.3: A comparison of the performance achieved by different values of γ, respective to β.
(The trigram-only fitness function is included for reference.)

Amount of Ciphertext (letters) Test Statistic
β γ 100 200 300 400 500 600 700 800 900 1000 p h
0 10 7.0 11.9 14.7 16.2 18.0 21.6 22.7 21.5 22.8 24.4 - -
10 10 6.2 8.6 14.6 18.5 18.8 20.3 20.5 20.8 21.5 22.7 0.1543 0
10 20 7.4 10.9 14.4 19.8 20.7 20.7 20.5 23.1 22.8 23.3 0.8203 0
10 30 5.8 12.6 17.5 20.4 21.4 20.9 23.7 23.2 23.2 23.7 0.1387 0
10 40 7.5 12.7 17.3 18.4 21.9 21.8 23.8 23.9 23.7 23.9 0.0078 1
10 50 6.8 12.7 15.7 19.3 20.6 21.8 23.6 23.3 23.4 24.0 0.0195 1

Table 6.4: Mean numbers of correct key elements identified for different values of γ.

As can be seen in Figure 6.3, the combinations of bigram and trigram measures generally
enhance the performance of cryptanalysis, particularly with ciphertexts of fewer than 500
letters. The gain is maximised when γ = 40 and the corresponding test statistic – 0.0078 – is
strong evidence that this result is not due to chance. Hence, H0 is rejected in favour of H1.

6.3.5 Dictionary Weight

The dictionary heuristic is intended to provide further refinement for a largely-correct decryp-
tion (Subsection 4.3.1). As before, the dictionary weight δ is adjusted with respect to β = 10
and γ = 40. The test hypotheses are as follows:
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6.3 Identifying Optimal Weights for the Fitness Function

Null hypothesis H0: the dictionary measure combined with the bigram and trigram measures
is not an improvement on the combined bigram and trigram measures.

Alternative hypothesis H1: the dictionary measure combined with the bigram and trigram
measures yields significantly better performance than just the combined bigram and
trigram measures.
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Figure 6.4: A comparison of the performance achieved by different β : γ : δ ratios.

Amount of Ciphertext (letters) Test Statistic
β γ δ 100 200 300 400 500 600 700 800 900 1000 p h
10 40 0 7.5 12.7 17.3 18.4 21.9 21.8 23.8 23.9 23.7 23.9 - -
10 40 10 7.0 11.9 17.1 19.4 23.5 21.2 23.4 24.1 23.7 24.9 0.7070 0
10 40 20 6.6 9.4 19.8 21.6 23.0 23.8 22.5 22.8 24.9 25.6 0.3750 0
10 40 25 7.2 12.0 18.3 22.3 21.6 24.0 24.8 25.1 25.1 25.0 0.0254 1
10 40 30 6.8 17.1 17.4 20.6 24.8 23.5 23.6 24.4 23.5 22.9 0.2637 0
10 40 40 7.2 12.8 13.5 22.0 22.2 23.5 22.3 21.8 24.1 24.8 0.9219 0
10 40 60 5.6 13.0 15.0 20.7 18.6 20.8 22.5 22.6 23.2 22.9 0.0703 0
10 40 80 5.3 8.2 13.1 17.8 18.8 19.8 22.0 19.9 19.9 21.8 0.0020 0

Table 6.5: Mean numbers of correct key elements identified for different values of δ.

The benefit of the dictionary heuristic becomes apparent above a threshold amount of
ciphertext, whereupon a significant increase in the number of correctly-identified key elements
can be observed (Figure 6.4). However, for shorter ciphertexts, values of δ exceeding 40 tend
to unbalance the search10, since the first dictionary words detected in a decryption will not
necessarily be correct (Subsection 2.3.3).

The optimal value of δ is 25, which enables very high quality decryptions to be obtained
from ciphertexts of 500 letters or more. The corresponding test statistic of 0.0254 refutes H0.

6.3.6 Final Fitness Function

The results of the previous experiments indicate that the following fitness function is ideal for
cryptanalysing substitution ciphers:

Cost(k) = 10 · bi(k) + 40 · tri(k)− 25 · dict(k)

10The p-values for δ ≥ 60 indicate that these results are significantly worse than those obtained when δ = 0.
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6 Experimentation with the Tool

The large weight assigned to the trigram measure (relative to the unigram and bigram
weights) coincides with the weight values adopted by Clark and Dawson (1997). In addition,
the dictionary heuristic has been shown to enhance the quality of decryptions.

The emphasis placed on the trigram measure is in stark contrast with many of the fitness
functions proposed in earlier research (as reported in Subsection 2.3.1), which tend to neglect
trigram statistics in favour of unigram and bigram statistics. However, the utility of trigrams
for successful cryptanalysis has been systematically proven by this experiment.

6.4 Evaluating the Cryptanalytic Abilities of the Tool

The suitability of the tool for cryptanalysis is evaluated by performing attacks on a selection of
classical ciphers, using the fitness function specified in Subsection 6.3.6.

In the following experiments, the source texts identified in Subsection 6.3.1 are reused as
plaintext material and encrypted for each cipher investigated. The correctness of a decrypted
text is measured as the percentage of letters in the decrypt which match those of the plaintext.

6.4.1 Attacks on Polyalphabetic Substitution Ciphers

Two kinds of polyalphabetic substitution cipher are investigated:

• The first is the Vigenère cipher, which requires a d-letter keyword in order to select from
a set of Caesar-style shift mappings (Subsection 1.2.1).

• The second (and more general) polyalphabetic cipher is a concatenation of n distinct
alphabet permutations. These “mixed alphabets” are applied in sequence to encrypt
each letter in the plaintext (in the manner of simple substitution).

The tool models this form of cipher as a combination of (separate) simple substitution
functions; hence, cryptanalysis is performed by searching over the keyspaces associated
with each function in parallel.
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Figure 6.5: A profile of the correctness of decrypts for different Vigenère keyword lengths (d).

The results in Figure 6.5 indicate that, for the Vigenère cipher, near-perfect decryptions
(> 90% correct) are typically obtained when the amount of available ciphertext exceeds the
keyword length by a factor between 10 and 20. This is unsurprising, since, if each position
in the keyword is considered individually, only a few candidate letters will correspond to
decryptions which possess natural language statistics.
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6.4 Evaluating the Cryptanalytic Abilities of the Tool

The tool is clearly capable of solving this kind of cipher and, by extrapolation, similar
successes would be expected for cryptanalysing related keyword-based polyalphabetic ciphers,
such as the Beaufort and Playfair ciphers.
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Figure 6.6: A profile of the correctness of decryptions obtained for multiple mixed alphabets.

Cryptanalysis of the mixed alphabet polyalphabetic substitution cipher is moderately suc-
cessful if the cipher is limited to two substitution alphabets (Figure 6.6). However, when three
or more substitution alphabets are present, only a small fraction of the sample ciphertext is
decrypted correctly. (Increasing the number of substitution alphabets will widen the keyspace
of the cipher and create many more local optima in the search space. Hence, the probability
that search will find the correct decryption is diminished.)

The quality of decryptions is not greatly improved for larger amounts of ciphertext, which
suggests that the approach taken to cryptanalyse this cipher is the limiting factor. The strategies
developed by Jakobsen (1995) and Clark and Dawson (1997) appear to yield better performance
than achieved by the tool and therefore warrant further investigation.

6.4.2 Attacks on Block Transposition Ciphers

Cryptanalysis of a block transposition cipher (Subsection 1.2.2) was attempted with varying
sizes of key permutations. The results obtained are shown in Figure 6.7.
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Figure 6.7: A profile of the correctness of decryptions for different sizes of key permutation.

For all but the shortest key sizes, the quality of the decryptions achieved are disappointing. In
particular, the average correctness of decryptions fluctuates wildly and shows no improvement
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6 Experimentation with the Tool

for longer ciphertexts. Closer inspection of the results of individual runs indicates that
each decryption obtained is either perfect (or almost perfect) or completely incorrect, with a
tendency towards the latter.

This “all or nothing” categorisation of the decrypts suggests the outcome of each crypt-
analysis run is highly dependent on external factors. The author speculates that the PMX
crossover operator (Subsection 4.3.2) introduces too much disruption into the permutation
keys, meaning that search is failing to preserve good decryptions in the population.

To eliminate the effect of crossover, the experiment was repeated with simulated annealing
as the search algorithm, using the control parameters specified in Table 6.6.

Initial Temperature (T0): 100 Temperature Iterations (k): 100
Trial Moves (at each Tk): 50 Geometric Cooling Rate (α): 0.95

Table 6.6: Control parameters selected for the simulated annealing algorithm.
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Figure 6.8: A profile of the correctness of decryptions for different sizes of key permutation,
with simulated annealing used as the search algorithm.

The results achieved with simulated annealing (Figure 6.8) are much more consistent and
exhibit a gradual improvement in decryption correctness for longer ciphertexts. However, the
performance for long key permutations (d ≥ 16) falls somewhat short of the results obtained
by Matthews (1993) and Giddy and Safavi-Naini (1994).

It appears that the fitness function is incapable of discriminating between two related
transposition keys and thus cannot provide sufficient guidance to the search until a near-correct
decryption is reached. The weights of the fitness function were determined by experimentation
with a substitution cipher and, hence, there can be no guarantee of their optimality in the
context of cryptanalysing transposition ciphers.

6.5 Cryptanalysis of Unsolved Cryptograms

In this section, attacks on the unsolved cryptograms described in Section 1.4 are attempted, to
determine the behaviour of the cryptanalysis tool on ciphertexts with no apparent solution.

The means of encipherment of these cryptograms is not known, so cryptanalysis can only
proceed on the assumption of a particular cipher. Since there are a practically limitless number
of methods by which these texts may have been encrypted, only a small fraction of these
possible ciphers can be investigated.
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6.5 Cryptanalysis of Unsolved Cryptograms

6.5.1 The Dorabella Cipher

The 87 glyph symbols from the Dorabella cipher (Figure 1.5) were transcribed, by hand, to the
following source ciphertext, which was loaded into the cryptanalysis tool:

PURYGJEYBPZMDHMSMMJUUNHFPFAZV
EMEJFYBKYRMMRJADEMZMJNVDHFBBFZV

RVJNVRHNWAVJMJNDVAYUAVJYAGY

Proceeding on the supposition that Elgar encrypted the message by a combination of simple
substitution and block transposition, the cryptanalysis tool produced numerous decryptions.
Unfortunately, the decrypted texts are gibberish, although some contain recognisable words:

DGNOFTCOLDMEUSEVEETGGHSIDIRMA
CECTIOLYONEENTRUCEMETHAUSILLIMA
NATHANSHPRATETHUAROGRATORFO

UCROWNDOMUBELIEVEENCCGISUSTBA
DEDNSOMPOREERNTLDEBENGALISMMSBA
RANGARIGHTANENGLATOCTANOTWO

One should not read too much into the words that appear in these decrypts, as they can be
entirely attributed to the optimisation algorithm over-fitting the characteristics of the fitness
function (particularly the dictionary heuristic).

It should be noted that 87 letters is barely sufficient for cryptanalysis (Subsection 1.3.1), so
the lack of success in decrypting this cipher is unsurprising.

6.5.2 The Voynich Manuscript

The text from the first ten folios of the manuscript11 (totalling approximately 10,000 letters)
was subjected to cryptanalysis. This ciphertext was treated as having been encrypted by a
simple substitution cipher, although this is unlikely to be the case in reality.

For most runs, the search rapidly converged, resulting in decryptions similar to the following
first paragraph:

GAORIP.IMAN.AC.ATALLY.PREN.PRECI.OTRCSP.I.MEC.PRENDI
PECI.OMRAC.EC.I.MALC.ORTALLY.PRAC.ACS.OTRAC.OTRAC.DAY
PIALLC.PRSMI.EC.IMALLY.PRED.OTREACI.OTRSP.DACALLY.PA
EELLY.ETSSI.ETSEP.CENETI.OTR*AC.DALLY.ETALLY.EC.EMAY

DALC.I.ORSAC.OTRALLY.OFRAC.OGRALLY

This decryption exhibits a high fitness score – it is a good approximation to the expected
n-gram frequencies – but none of the text is intelligible in any language known to the author
(or his supervisor!). Whether the Voynich manuscript is authentic or a hoax, it is not apparent
how any meaningful information can be extracted from this text.

6.5.3 The 340-Symbol Zodiac Cryptogram

The solved 408-symbol Zodiac cryptogram was encrypted using a homophonic substitution
cipher, which suggests that the unsolved 340-symbol cryptogram is similarly encrypted.

Unfortunately, the tool failed to extract any meaningful decryptions from either of the 408-
symbol or the 340-symbol ciphertexts. There appears to be a problem in the implementation
of the Relation key structure (Subsection 5.3.3) with regards to handling homophone symbols.
Due to time constraints, the cause of this problem could not be investigated or resolved.

11Takeshi Takahashi’s transcription of the Voynich manuscript is available at http://www.voynich.com/pages/PagesH.txt
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7 Evaluation and Further Work

This chapter evaluates the completed cryptanalysis tool against the objectives stated in Chapter 3. The
strengths and weaknesses of the tool are identified and analysed, together with factors that impacted
the tool’s development. Finally, some potential topics for future research are proposed.

7.1 Appraisal of Project

The project deliverables (Section 3.2) are fulfilled by the completed tool.

7.1.1 Analysis of Cipher Model

The cipher model was an unequivocal success. The representation of substitution and trans-
position operations as functions on text objects worked particularly well in practice, as each
individual function could be implemented and tested independently.

The model facilitates the construction of arbitrary product ciphers by coupling text functions
together. Although this feature was not utilised in the experiments reported in Chapter 6, it
would be useful for modelling multi-step ciphers (such as rotor machines) in future work.

Part of the cipher layer was over-engineered: the support for customisable alphabets
in the implementation of text services (Subsection 5.3.1) was unneeded1. Furthermore, the
representation of each individual text element as a separate object has no discernible advantage
over using a numeric representation of symbols and letters in text and, if the cipher layer was
to be re-implemented, this latter approach would be favoured for efficiency.

7.1.2 Cryptanalysis Capabilities of the Tool

In Chapter 6, a variety of ciphers were subjected to cryptanalysis by the tool. In many cases,
the tool produced high quality decrypts, albeit with some exceptions:

• The tool is capable of recovering a high proportion of correct text from a simple substitu-
tion cipher with as few as 250 ciphertext letters (Figure 6.4). These results constitute a
marked improvement on earlier work: indeed, they are clearly superior to the results
reported by Forsyth and Safavi-Naini (1993) and Spillman et al. (1993).

• Good decryptions were achieved in attacks on ciphertexts encrypted by block transposi-
tion and the Vigenère cipher, for reasonable key sizes.

Unfortunately, the tool struggled to perform effective cryptanalysis on block transposition
ciphers with large permutation keys and mixed alphabet polyalphabetic substitution
ciphers, when compared to the attacks reported by Matthews (1993) and Clark (1998)
respectively. In defence of the tool, it should be noted that these researchers specialised
their attacks to these particular kinds of ciphers.

• The lack of success of the attempted cryptanalysis of the unsolved cryptograms should
not be seen to diminish the tool’s capabilities. Indeed, these cryptograms have resisted
all previous attacks and, as stated in Section 1.4, they may not be solvable by any means.

1In order to perform attacks on the unsolved cryptograms described in Section 1.4, machine-readable versions of
these ciphertexts were sourced.
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7.2 Software Engineering Concerns

The effectiveness of the tool in attacks on substitution ciphers was greatly improved by
incorporating multiple evaluation measures (with appropriate weights) into the fitness function
given in Subsection 6.3.6. The author believes that, for the attacks on transposition ciphers,
better performance could be achieved by using a different set of weights for the evaluation
measures in the fitness function.

There is likely to be further potential for improving the performance of cryptanalysis by
tuning the control parameters of the optimisation algorithm. Other possible approaches for
attaining better decryptions – in particular, revising the search operators and fitness function –
are discussed in Section 7.3.

The tool could be extended to perform attacks on complex polyalphabetic ciphers such as
the Enigma machine (and related rotor-based cipher systems). However, due to the additional
complexity of these ciphers, their cryptanalysis would necessitate the development of new
heuristics for evaluating the correctness of candidate decryptions. (Some research in this area
has been performed by Bagnall et al. (1997).)

7.1.3 User Interface

The front-end user interface exposes the functionality of the cipher and cryptanalysis layers
of the tool (Subsection 5.3.6). Owing to time constraints, further development of the user
interface was curtailed in favour of developing the cryptanalysis layer.

Consequentially, there is a large scope for improvement of the user interface, in terms of
specific features (such as visualisation of the progress of a cryptanalysis run) and its general
usability. Extending the user interface in this way could transform the tool into a program for
teaching the principles of classical cryptography and metaheuristic search techniques.

7.2 Software Engineering Concerns

The extreme programming (XP) method was selected as the software development model
in Section 3.3. In practice, extreme programming worked well for the tool’s construction,
as it imposed a workable structure on the development process, whilst minimising the
documentation overhead2. In particular, the adherence to unit testing proved vital for isolating
(and resolving) many bugs in the implementation of the cipher and cryptanalysis layers.

As discussed in Section 5.2, several software development tools were adopted to manage
various aspects of the development process. The features of the Eclipse IDE – especially the
facilities for debugging and code re-factoring – were used heavily during the tool development.
These facilities saved a substantial amount of time and effort and significantly improved the
code quality of the finished tool.

In retrospect, Java served well as the implementation language for the tool, notwithstanding
some concerns regarding execution performance discussed in Subsection 7.3.7. The use of Java
enabled the cryptanalysis layer to be interfaced with the ECJ toolkit in a straightforward man-
ner, although some unorthodox coding practices were employed to integrate the implemented
key structures (Subsection 5.3.3) with ECJ’s string-based representation of the chromosomes of
solutions within a population.

2The design decisions made for the tool were documented in note form during the construction phase of the
project. Chapters 4 and 5 were partially written by expanding these notes.
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7.3 Potential Topics for Future Investigation

This section describes topics relevant to the project that, for a number of reasons, were not
investigated. These include proposals for useful enhancements to the tool, along with ideas
and proposals for research that fall outside the scope of the project objectives.

7.3.1 Automatic Recognition of Ciphers from Ciphertexts

In order to carry out cryptanalysis on a ciphertext, the tool requires the specification of the
cipher used to encrypt the text. Throughout this project, knowledge of the means of encryption
of ciphertexts has been assumed (for simplicity). However, this need not be the case, especially
when dealing with the cryptograms considered in Section 6.5.

It would be possible to integrate a suite of specialised heuristics into the tool, to recognise
the characteristics of particular ciphers:

• There exists a simple test – described in Subsection 1.2.2 – to identify whether a given
ciphertext has been produced by a substitution or transposition cipher. In the former
case, the tool could then proceed to distinguish between simple (monoalphabetic) and
polyalphabetic substitution by analysing the “flatness” of the n-gram statistics of the
ciphertext. Furthermore, methods such as the Kasiski examination (Subsection 1.3.2)
could be used to determine the period of a polyalphabetic cipher automatically.

• Other properties of a ciphertext may be used to determine the encryption method. For
example, the ADFGVX cipher (Section A.7) features a ciphertext alphabet consisting of
six specific letters. The sole presence of these letters in a ciphertext is therefore indicative
of ADFGVX encryption.

It is expected that these heuristics would be adequate for recognising the use of a single
cipher transformation in the creation of a given ciphertext. A somewhat more difficult problem
– which may require extensions to these heuristics – would be to recognise the multiple
substitution and transposition steps that constitute a product cipher.

7.3.2 Combining Local and Population-Based Metaheuristics

Many of the attacks reported in Section 6.4 achieved mostly-correct decryptions using a
genetic algorithm. One means of enhancing the quality of these decryptions is to increase
the population size or the number of generations processed by the GA. An alternative (and
computationally more efficient) approach would be to take the best decryption achieved by
the GA and perform further refinement using a local search algorithm.

7.3.3 Specialising the Search Operators

The mutation and crossover operators implemented in the tool (Subsection 4.3.2) were chosen
for their general applicability to a range of key structures. However, there is potential for
specialising these search operators to exploit the properties of particular key structures and
ciphers, which may enhance the performance of cryptanalysis.

As suggested in Subsection 6.4.2, it may be possible to improve the quality of decryptions for
transposition ciphers by using a different crossover operator. One potential candidate is order
crossover, which preserves the relative positions of elements within a permutation key (Bäck
et al., 1997). Alternatively, it would be possible to bias the PMX operator to select crossover
points that are closer together, thereby reducing the disruption to the child sequences.
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7.3 Potential Topics for Future Investigation

7.3.4 Seeding Decrypts with Crib Words

A potential technique for automated cryptanalysis – which, to the author’s knowledge, has
not been previously considered in the literature – is to seed the population of decrypted texts
with candidate decrypts containing words that are suspected to exist in the plaintext. This
is practically a re-interpretation of the cribbing technique (Subsection 1.3.3) in the context of
search-based cryptanalysis.

With this technique integrated into the tool, the possibilities for attacks on the Dorabella
cipher and Zodiac cryptograms are intriguing. Based on the circumstances of each cryptogram,
a list of suspected crib words can be drawn up3. Before cryptanalysis of a ciphertext commences,
a set of candidate keys would be calculated that result in the occurrence of crib words at
various positions in the corresponding decrypted text.

7.3.5 Refining the Fitness Heuristics

Since the dictionary heuristic does not play any role in the evaluation of decrypts in the early
stages of cryptanalysis (Subsection 4.3.1), the tool’s run-time efficiency would be improved by
introducing this measure only when there is a high probability of finding recognisable words
in decryptions. This may be after a certain number of iterations of the optimisation algorithm
have elapsed4, or when a candidate decryption is found that achieves a particularly high score
for the n-gram measures.

A more radical approach would be to continually adjust the weights of the fitness function
during cryptanalysis. For example, only the unigram and bigram measures may be active
at the start of the search, but as the search progresses, the fitness function would gradually
transition to trigram and dictionary measures. This would encourage the development of
decryptions that satisfy the fitness measures as they are introduced – rather than attempting
to satisfy all at once – with a view to improving the quality of the final decryption.

For population-based metaheuristics, a potential difficulty with this technique is that, after
an adjustment to a weight is made, the fitness score of each candidate decryption key in the
population would need to be re-evaluated.

7.3.6 Investigating New Metaheuristic Techniques

Most attacks on classical ciphers – including those attempted in Section 6.4 – have been carried
out using only simulated annealing and genetic algorithms.

In the years following the publication of these algorithms, several new metaheuristic tech-
niques have been introduced. Their inventors claim that – in many cases – they deliver better
performance than earlier algorithms5, in terms of accuracy and efficiency. Would these new
metaheuristics enhance the performance of automated cryptanalysis?

As the tool is integrated with ECJ, the tool has access to the evolutionary metaheuristics
supported by ECJ. Hence, the foundations required to facilitate an investigation into the merits
of different evolutionary metaheuristics are already present in the tool.

3For example, Elgar may have included oblique references to contemporary composers, football or Dora Penny’s
singing activities (Subsection 1.4.1), whilst the Zodiac cryptogram would be expected to include words such as
“kill” or “murder”. However, caution must be exercised, as spelling mistakes are sprinkled liberally throughout
the Zodiac’s letters (Subsection 1.4.3).

4This is the approach taken by Clark and Dawson (1997), who adopts a fitness function that includes the trigram
measure only for the latter half of a cryptanalysis run.

5The work published by Russell et al. (2003) demonstrates the ant colony optimisation (ACO) metaheuristic search
algorithm to be capable of breaking columnar transposition ciphers “which are significantly shorter (up to a factor
of about a half) than those tackled by previous metaheuristic methods”.
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7 Evaluation and Further Work

7.3.7 Improving the Performance of the Cryptanalysis Engine

Unfortunately, the execution time of a cryptanalysis run is far longer than originally anticipated:
on a modern dual-core 2GHz processor, a single cryptanalysis run takes approximately 20
seconds to complete. This is consistent with the execution times reported by Forsyth and
Safavi-Naini (1993) and Spillman et al. (1993), who had only a fraction of these computing
resources at their disposal6.

One means of improving the run-time speed of cryptanalysis would be to re-implement
the cipher and cryptanalysis layers in a language that is compilable to native machine code;
however, doing so would be costly in terms of time and effort.

A more pragmatic approach for enhancing the tool’s performance would be to introduce
parallelism to the cryptanalysis engine. This could be accomplished by adapting the tool to
utilise the distributed processing capabilities already present in the ECJ toolkit.

For example, multiple independent cryptanalysis runs could be executed simultaneously
and, upon their completion, the highest-fitness decryptions from each of the runs would be
collected and presented to the user. It would be possible to extend this model by introducing
an element of interbreeding between populations during cryptanalysis, by exchanging the
fittest decrypts present in each population at regular intervals.

6However, this performance deficit is somewhat offset by the increased processing requirements of the sophisti-
cated heuristics implemented within the tool.
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8 Conclusions

8.1 Summary of Work

The key points arising from this project are as follows:

• A generalised model of classical ciphers has been devised. Multiple forms of substitution
and transposition ciphers have been implemented within this model.

• A software tool has been developed to perform automated cryptanalysis of classical
ciphers using optimisation techniques guided by a selection of suitable heuristics.

• The effectiveness of the tool has been assessed by carrying out successful attacks on
a selection of classical ciphers. For some of these ciphers, the quality of the decrypts
produced by the tool exceed those attained by previous reported research. However,
there is clear potential for improvement in the approaches used to cryptanalyse other
kinds of classical ciphers.

8.2 Closing Remarks

This project has culminated in the first software system which is explicitly designed to perform
cryptanalysis on a generalised model of classical ciphers.

The work accomplished in this project provides a solid foundation for further research into
the application of search-based methods to the cryptanalysis of classical ciphers.

Possible extensions to the tool would address more complex forms of ciphers (featuring
combinations of substitution and transposition operations) such as rotor machines and certain
types of block ciphers. On an unrelated note, the tool has potential as a teaching aid to
illustrate the basic principles of cryptology.

The fundamental characteristic of classical ciphers upon which optimisation-based attacks
rely – namely, that related cipher keys yield slightly different decryptions – does not apply for
modern block ciphers such as DES and AES.

Modern cryptographic systems are explicitly designed to be extremely difficult to break
using any known form of cryptanalysis. It appears that the potential for successful attacks on
these ciphers, using only the approaches detailed in this report, is limited. Future work in this
area is left as an exercise to the interested reader.
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A A Brief History of Classical Cryptography

The reader is referred to Kahn (1997), which is the definitive account of the historical development of
cryptography. Much of the material in this section is sourced from Kahn (1997).

A.1 The Ancient World

The earliest known application of cryptographic principles dates back to ancient Egypt. The
tomb of Khnumhotep II1 bears an inscription that contains non-standard hieroglyphs as
phonetic substitutions; the scribe’s intention was to convey a sense of the subject’s prestige and
authority. This technique of message transformation soon proliferated throughout Egypt, with
inscriptions obscured as riddles, designed to tempt visitors into reading aloud the blessings
contained therein.

Transformation of messages – combined with an element of secrecy – represents a proto-
cryptology, in which textual elements are distorted, so that only those with special knowledge
can comprehend them. This features in religious traditions: in the Book of Jeremiah, the
Atbash cipher2 is used to encode “babel” (the Hebrew form for Babylon) as “SHESHACH”
(Jeremiah 25:26, 51:41) and “kashdim” (the inhabitants of Babylon) is substituted by “LEB
KAMAI” (Jeremiah 51:1). Likewise, it is suggested that 6663 – the “Number of the Beast”
(Revelation 13:18) – is Hebrew gematria for the Roman emperor Nero, the persecutor of early
Christians. This would have given the texts plausible deniability, should they have fallen into
the hands of the Roman authorities.

The Greek historian Herodotus4 describes the use of steganography in the Greco-Persian
wars. Demaratus, a Greek exile living in Persia, witnessed the assembly of an invasion force
to attack Greece. He sent a messenger to his homeland, advising the Greeks of the Persian
intentions. To avoid the danger of the Persians intercepting the message, Demaratus wrote
it on wooden tablets before covering them with wax, so that they would appear blank. The
message reached its destination safely and was revealed to the Greeks, who subsequently
mobilised, prepared an ambush and defeated the Persian invaders.

Steganography precipitated the first system of military cryptography. It is said that circa
500BCE, the Greek Spartans introduced the scytale, a wooden staff around which a strip of
parchment is wrapped. A message is written on the parchment down the length of the staff.
The parchment is then unwound: the disconnected letters of the message are meaningless
until the parchment is re-wrapped around a scytale of equal diameter, whereby the message
is restored (Singh, 2000). The scytale is equivalent to a matrix transposition cipher, with the
dimensions of the staff corresponding to the key.

The famous “Caesar cipher” is a monoalphabetic substitution cipher, in which each plaintext
character is replaced by the letter a fixed number of places down the alphabet. According
to Suetonius, Julius Caesar used it to protect military and political communications with a
left shift of 3: for example, the phrase “veni, vidi, vici” encrypts to “SBKF, SFAF,

1Khnumhotep II, a nobleman and provincial governor of the town of Menat-Khufu, circa 1900BCE.
2Atbash is a simple substitution cipher: the first letter of the alphabet (in Hebrew, aleph) replaces the last (tav), the

second (beth) replaces the penultimate (shin), and so on.
3Some of the oldest manuscripts have the number 616 instead.
4Herodotus (ca. 484BCE – ca. 425 BCE); acclaimed as the “Father of History”, but also as the “Father of Lies” by

his detractors, for many of his accounts contradict known historical facts in places.
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A.2 Early Advances

SFZF”. Since the number of possible shifts is equal to the number of letters in the alphabet,
the keyspace size of the Caesar cipher is 25 (excluding the identity shift), making it trivial to
cryptanalyse by enumerating all possibilities.5

A.2 Early Advances

The collapse of the Roman Empire in 476CE and the destruction of the Library of Alexandria
plunged Europe into the Dark Ages. However, this period coincided with the Golden Age
of Islam, where literacy flourished in an organised and affluent society. This mandated
and facilitated the advance of cryptographic techniques, which were used extensively by the
Islamic state to protect administrative records (Singh, 2000). The Arab philosopher and scientist
Al-Kindı̄ is credited with pioneering6 cryptanalysis techniques such as probable words and
vowel-consonant combinations, cipher classifications and frequency analysis (Al-Kadi, 1992).

During this time, the study of cryptography in the West was limited to the monasteries,
where monks attempted to extract messages hidden in biblical texts (Singh, 2000). Slowly,
cipher systems were invented independently or introduced from the Arab world. Circa 1250,
the Franciscan friar and polymath Roger Bacon published the first text on cryptography
7 in Europe. In particular, this work included an anagrammed recipe for manufacturing
gunpowder – an early example of the use of cryptography by alchemists and scientists to keep
their discoveries secret (Singh, 2000).

The advent of diplomatic relations between European states in the 15th century brought about
the flow of information between countries and their embassies abroad. These communications
soon became subject to espionage: then, as now, no government had qualms about intercepting
and reading the secrets of other states (Belfield, 2006). By the end of the century, most
countries in Europe employed full-time schools of cipher secretaries to protect their messages
and decrypt foreign dispatches.

A.3 Polyalphabetic Ciphers

In the 1460s, without a cipher school of its own, the Vatican approached the great Renaissance
architect and scholar Leon Battista Alberti to devise methods for reading the communications
of its enemies. Already in his sixties, Alberti produced a treatise on cryptanalytic techniques,
then proceeded to invent the polyalphabetic substitution cipher in the form of the cipher disc.

The cipher disc is a device made of two circular plates, one smaller and mounted concentri-
cally above the larger. The circumference of each plate is divided into equally-sized sectors
for each letter of the alphabet (in any order), representing a substitution mapping between
plaintext and ciphertext. By turning one plate relative to the other, a different cipher mapping
is produced, giving rise to the first polyalphabetic cipher system. Another innovation was the
inclusion of code numbers on the disc, facilitating their encryption along with the text.

Polygraphiæ (1508), written by the abbot and occultist Johannes Trithemius, describes a
polyalphabetic cipher based on the tabula recta (Figure 1.2), a square table containing all shifts

5It appears that Bernardo Provenzano, the reputed “boss of bosses” of the Sicilian Mafia, was unaware of this
shortcoming. Provenzano used a variant of the Caesar cipher for written orders to his associates: this enabled
Italian investigators to decrypt these messages, contributing to his arrest in April 2006. Fittingly, a contemporary
of Provenzano is reported to have once remarked that: “He shoots like a god, shame he has the brains of a chicken. . . ”

6A copy of Al-Kindı̄’s text, A Manuscript on Deciphering Cryptographic Messages, was rediscovered in 1987, in the
Sulaimaniyah Ottoman Archive in Istanbul (Al-Kadi, 1992).

7This is the Epistle on the Secret Works of Art and the Nullity of Magic, which describes seven (simple) ciphers. Bacon
argues for the right of everyone to secure communication: “The man is insane who writes a secret in any other
way than one which will conceal it from the vulgar and make it intelligible only with difficulty even to scientific men and
earnest students.”

65



A A Brief History of Classical Cryptography

of the Latin alphabet, in the manner of the Caesar cipher. To encrypt a message, the first
letter is encrypted using the first row of the table, the second letter with the second row, and
so on: for example, the phrase “black magic” encrypts to “BMCFO RGNQL”. A significant
advancement over Trithemius’ use of the tabula recta, published by Giovan Battista Bellaso in
1553, is now known8 as the Vigenère cipher (see Subsection 1.2.1).

Although the ideas of Alberti, Trithemius and Bellaso far surpassed the contemporary
cryptographic systems in sophistication, they were shunned by the European cipher secretaries,
because polyalphabetic substitution is a slow process to perform by hand, whilst a single
mistake in application will garble the ciphertext, making its decryption impossible.

A.4 The Babington Plot

The reign of Queen Elizabeth I of England was a time of deep religious tension. Elizabeth, a
Protestant, was resented by her Catholic subjects, who considered her cousin Mary Stuart9 to
be the rightful Queen of England. In 1567, Mary was forced to abdicate the Scottish throne and
flee to England, only to be placed under house arrest for the following eighteen years. During
this time, Mary was implicated in several plots against Elizabeth’s rule; however, Elizabeth
refused to sanction her execution, not least because she was her relative and a fellow monarch.

A young priest, Gilbert Gifford, was recruited to establish a secret communications channel
between Mary and the French ambassador. Mary took elaborate measures to ensure the
security of her correspondence, including the use of a nomenclator to encrypt her messages.

Figure A.1: Mary’s nomenclator cipher. (Source: the UK National Archives website.)

In March 1586, Anthony Babington, a Catholic nobleman who held particular grievances to-
ward the Protestant state, gathered six confidants and hatched an ambitious plan to assassinate
Elizabeth and install Mary on the throne. Although the Vatican had sanctioned the overthrow

8When the cipher gained prominence in the 19th century, it was misattributed to Blaise de Vigenère who, in his
Traicté des Chiffres (1586), had instead proposed a refinement of the method – the autokey cipher – in which the
plaintext is itself be used as the key.

9Mary I of Scotland (1542 – 1587); popularly known as Mary, Queen of Scots.
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A.5 The Black Chambers

of Elizabeth10, the plotters resolved to seek Mary’s authorisation before taking action. Early in
July, Babington exchanged several letters with Mary specifying the details of the plan.

What neither Mary nor Babington knew was that Gilbert Gifford was a double agent who
was diverting their correspondence to his controller Sir Francis Walsingham, the principal
secretary to Queen Elizabeth and ruthless state spymaster. Walsingham assigned his star
cryptanalyst Thomas Phelippes to break Mary’s nomenclator and decipher the messages, but
waited for Mary to incriminate herself before taking action. Having received the letter from
Mary in which she acquiesced to the plot, Walsingham had Phelippes forge an encrypted
postscript before it was relayed to Babington, asking for “the names and qualities of the six
gentlemen which are to accomplish the designment”.

Babington and the other conspirators were rounded up and, on 18th September 1586, were
convicted of high treason and sentenced to death. Later, Mary was tried on the same charge
and, on the evidence of her deciphered letters, found guilty. Mary’s part in the conspiracy
convinced Queen Elizabeth that she would remain a threat as long as she remained alive. Her
death warrant was signed in February 1587.

A.5 The Black Chambers

The cryptographic career of Antoine Rossignol began in April 1628, when Henri II de Bourbon,
the Prince of Condé, laid siege to the Huguenot stronghold town of Réalmont. Their defences
unbreached, the town’s inhabitants put up fierce resistance, but were in desperate need of
munitions. Unable to hold out for much longer without outside support, the Huguenot
commander sent an enciphered message to summon reinforcements, but its courier was caught
when attempting to sneak through the blockade. Since Condé’s officers were unable to decrypt
the message, Rossignol – who was reputed to have an interest in ciphers – was summoned to
examine the message and, before nightfall, he had extracted its contents. Having now learnt
that Réalmont was on the brink of capitulation, Condé had the decrypted message returned to
the defenders, on the understanding that the siege would not be lifted. Knowing that defeat
was now inevitable, the Huguenots promptly surrendered.

When news of this victory reached Cardinal Richelieu, he immediately appointed Rossignol
to his court and set him to work on other intercepted Huguenot messages. This resulted in
similar successes, quickly establishing Rossignol as the foremost cryptographer in Europe. His
expertise helped to strengthen the French nomenclator ciphers in use at the time, culminating
in the design of the Great Cipher of Louis XIV, a nomenclator which only Rossignol, his son
and grandson fully mastered11.

Together with other French cryptographers, the Rossignols established the cabinet noir (black
chamber), a government office through which foreign diplomatic mail was routed: letters were
opened and their contents duplicated, before being resealed and returned to the postal system.
In the 1700s, many European powers followed France’s lead and established their own black
chambers. The Geheime Kabinets-Kanzlei in Vienna was the most efficient of all: it not only
supplied the intelligence which directed Austrian foreign policy, but also sold the information
it harvested to friendly nations. (Singh, 2000)

The black chambers represented cryptography’s “industrial revolution”, with large-scale
organised cryptanalytic efforts rendering insecure all primitive ciphers and forcing cipher
secretaries to adopt tougher systems such as the Vigenère cipher. In turn, the focus of the
black chambers shifted to intercepting and reading personal mail. The political reforms of

10Regnans in Excelsis, the papal bull issued by Pope Pius V in 1570, demanded that Elizabeth was to be “. . . deprived
of her pretended title to the crown and of all lordship, dignity and privilege whatsoever.”

11The Great Cipher was used to protect the French state archive. It resisted all enemy cryptanalytic efforts and
remained unbroken until the 1890s, when it attracted the interest of the French cryptanalyst Étienne Bazeries,
who devoted three years of his life to its solution. (Singh, 2000)
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the mid-19th century swept away the old authoritarian European order and, in 1844, public
pressure forced the British Parliament to dissolve its black chamber. Four years later, the
governments of France and Austria also abolished their black chambers.

A.6 Fair Play in Love and War

As the era of the black chambers was brought to an end, a revolutionary technology heralded
a new age of cryptography. This was the electric telegraph, which facilitated instantaneous
transmission of messages over long distances. By the 1870s, commercial telegraph networks
extended to every continent, making global communication possible for the first time.

Although the telegraph operators were sworn to secrecy, their customers desired a means of
keeping the contents of their telegrams private, in the same way that the envelope provides
privacy of correspondence in the postal system. This resulted in the development of many
codes and ciphers to guard against casual snooping; one of the strongest being the Playfair
cipher, invented by Charles Wheatstone12 and popularised by Lyon Playfair, Baron of St.
Andrews. This is a digraphic substitution cipher, where letters are enciphered as pairs,
spreading the ciphertext characteristics over 625 (252) bigrams, rather than 25 letters13.

The heightened public awareness of cryptographic techniques was not limited to their
use in telegraph messages; soon, ciphers were being used for a variety of purposes. Since
romantic expression was forbidden by Victorian society, young lovers communicated by
exchanging coded notes of affection in the “personal columns” of newspapers. Unsurprisingly,
it became an amusement of amateur cryptographers to break these messages and, sometimes,
to surreptitiously insert a reply of their own14.

Prior to the introduction of the telegraph, military strategy was impeded by an inability to
coordinate forces in battle from a distance. The telegraph saw limited action in the Crimea,
but the full extent of its effectiveness was shown in the American Civil War15. However,
signal lines can be wiretapped, so it became necessary to employ field ciphers to ensure secure
communication. A field cipher provides a compromise between simplicity and security: it
must be usable (to a high degree of accuracy) by soldiers without extensive training, but also
be resistant to enemy cryptanalysis until its secret loses all practical value. Early examples of
field ciphers include the polyalphabetic cipher disc (Section A.3) which served both Union
and Confederate forces in the Civil War; the Playfair cipher, reportedly used by the British in
the Boer Wars and the St. Cyr slide rule (Pratt, 1939), a device to speed up the encryption and
decryption processes of the Vigenère cipher.

A.7 The First World War

At the turn of the century, the invention of the radio – the “wireless telegraph” – attracted
worldwide interest, for it offered the capability of the telegraph without needing an established
line of communication. For the military, however, the very nature of radio was its greatest
drawback, because it was impossible to avoid every transmission from being broadcasted to
the enemy. More than ever, a secure cipher was required, but none was forthcoming.

12Charles Wheatstone (1802 – 1875); an English physicist and inventor who, with William Fothergill Cooke, was a
major figure in the development of the British telegraph system, receiving a knighthood for this work in 1868.

13Playfair is constructed as a 5× 5 alphabet square, with the ‘I’ and ‘J’ coinciding. However, it is still a monoalpha-
betic cipher, which makes it susceptible to bigram frequency analysis.

14Amongst others, Charles Wheatstone and Lyon Playfair took part in this activity: having broken into one such
correspondence, they composed a message in its cipher, prompting the response: “Dear Charlie: write no more.
Our cipher is discovered.” (Bauer, 1997)

15In his memoirs, General William T. Sherman wrote that “the value of the magnetic telegraph in war cannot be
exaggerated”.
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A.7 The First World War

Cryptography was in disarray. Kasiski had demolished the security of the “unbreakable”
Vigenère cipher and related polyalphabetic systems (such as the Beaufort cipher). For the first
time since Rossignol, the cryptanalysts had the upper hand and matters did not improve for
those who wished to maintain the secrecy of their communications16. The increasing tensions
between the European nations compelled them to develop larger and more elaborate code
systems than ever before (Pratt, 1939).

By 1914, Europe was on the brink of war. The assassination of Archduke Franz Ferdinand
of Austria sparked the inevitable chain reaction. The opposing powers had prepared well
materially, but their communication systems were staggeringly ineffective. In August 1914, the
Russian commanders Rennenkampf and Samsonov, having been issued with different versions
of the Russian cipher, foolishly resorted to exchanging the details of their troop movements
in unencrypted form. These messages were intercepted by the Germans, who changed their
strategy in light of this evidence, culminating in the destruction of the Russian Second Army
at the Battle of Tannenberg (Pratt, 1939).

One early success of the Entente powers was the Russian Navy’s capture of codebooks from
the German cruiser Magdeburg. This windfall provided “Room 40”, the British Admiralty’s
newly established decoding department, not only with the current German naval codes, but
also with an insight into the system on which these codes were built (Pratt, 1939). For the next
two years, the British were able to read their enemy’s coded messages without difficulty until,
in the aftermath of the naval battle of Jutland, the Germans grew suspicious and changed their
system in August 1916 (Pratt, 1939).

Amongst its many successes, Room 40 is credited with the most important decipherment of
the 20th century. In January 1917, the British intercepted a coded telegram17 from the German
Foreign Office, addressed to the German embassy in Mexico City. This aroused the suspicions
of Room 40, which assigned two cryptanalysts – Nigel de Grey and William Montgomery –
to its decipherment. History knows the result as the infamous Zimmermann telegram, which
detailed a German plan to commence unrestricted submarine warfare in the Atlantic against
American interests18. When the British handed a copy to the United States ambassador (and
the press), the American policy of neutrality towards Germany became untenable, and soon
led to the United States declaring war against Germany in April 1917.

The Germans introduced their ADFGX19 field cipher just prior to the commencement of the
Spring Offensive20. Initial attempts to break the cipher were unsuccessful, but there was soon
an abundance of intercepts reporting progress of the German attack. Georges Painvin, the
best cryptanalyst in the French service, worked on the intercepted ciphertexts continuously
for two months, to the detriment of his health. He achieved his first complete break in early
April, with other decrypts flowing regularly thereafter. These decrypts enabled the French
to pinpoint the target of the German bombardment of June, allowing them to sidestep the
offensive and launch a counterattack.

16In the wake of the untimely death of President Félix Faure in 1899, the resurgent French royalists made plans to
stage a coup. However, their communications, encrypted with the Beaufort cipher (a variant of the Vigenère
cipher), were promptly broken by Étienne Bazeries using a combination of the Kasiski test and probable words.
This gave the authorities forewarning of the uprising, allowing them to act decisively: the key conspirators
were arrested and, on the testimony of Bazeries, were exiled in 1900 (Pratt, 1939).

17The telegram was encoded in the German code 0075, known to Room 40 since July 1916.
18To counter the inevitable retaliation, Germany proposed to ally with Mexico and finance a Mexican invasion of

the United States. (Mexico had ceded territory to the United States under the terms of the Treaty of Guadalupe
Hidalgo in 1848.)

19ADFGX is a fractionating (Polybius square substitution) transposition cipher, named for the five letters that
comprise its ciphertext alphabet. It was extended to six letters, becoming ADFGVX.

20The Spring Offensive of 1918 represented Germany’s final push for victory, before the overwhelming resources
of the United States could be deployed. The German forces made the largest territorial gains on the Western
Front by either side during the entire war, but suffered huge losses which could not be replenished.
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B Screenshots of Tool User Interface (unmarked)

An overview of the tool’s user interface is given in Subsection 5.3.6.

Figure B.1: A dialog to construct cipher “pipelines”, by specifying a list of cipher functions
and (optionally) their keys. Part of the key shown in Figure 1.1 is visible.

Figure B.2: A dialog to set weight values for each component of the fitness function.
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Figure B.3: A dialog to show the progress of a cryptanalysis run.

Figure B.4: A dialog to show the n-gram statistics of a text.
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C Examples of Decrypted Texts (unmarked)

ALICEWASBEGINNINGTOGETVERYTIREDOFSITTINGBYHERSISTERONTHEBANKANDOF
HAVINGNOTHINGTODOONCEORTWICESHEHADPEEPEDINTOTHEBOOKHERSISTERWAS

READINGBUTITHADNOPICTURESORCONVERSATIONSINITANDWHATISTHEUSEOFABOOK
THOUGHTALICEWITHOUTPICTURESORCONVERSATIONSOSHEWASCONSIDERINGINHER
OWNMINDASWELLASSHECOULDFORTHEHOTDAYMADEHERFEELVERYSLEEPYANDSTUPID
WHETHERTHEPLEASUREOFMAKINGADAISYCHAINWOULDBEWORTHTHETROUBLEOF

GETTINGUPANDPICKINGTHEDAISIESWHENSUDDENLYAWHITERABBITWITHPINKEYES
RANCLOSEBYHERTHEREWASNOTHINGSOVERYREMARKABLEINTHAT

Figure C.1: The correct plaintext: the first 500 letters of Alice’s Adventures in Wonderland.

AYICEWASBEGINNINGTOGETVEMUTIMEDOPSITTINGBUHEMSISTEMONTHEBANFANDOP
HAVINGNOTHINGTODOONCEOMTWICESHEHADREEREDINTOTHEBOOFHEMSISTEMWAS

MEADINGBLTITHADNORICTLMESOMCONVEMSATIONSINITANDWHATISTHELSEOPABOOF
THOLGHTAYICEWITHOLTRICTLMESOMCONVEMSATIONSOSHEWASCONSIDEMINGINHEM
OWNXINDASWEYYASSHECOLYDPOMTHEHOTDAUXADEHEMPEEYVEMUSYEERUANDSTLRID
WHETHEMTHERYEASLMEOPXAFINGADAISUCHAINWOLYDBEWOMTHTHETMOLBYEOP

GETTINGLRANDRICFINGTHEDAISIESWHENSLDDENYUAWHITEMABBITWITHRINFEUES
MANCYOSEBUHEMTHEMEWASNOTHINGSOVEMUMEXAMFABYEINTHAT

Figure C.2: A sample decryption with approximately 80% letters correct.

AUIMECALFEGINNINGSOGESVERYSIREDOBLISSINGFYTERLILSERONSTEFANKANDOB
TAVINGNOSTINGSODOONMEORSCIMELTETADHEEHEDINSOSTEFOOKTERLILSERCAL

READINGFPSISTADNOHIMSPRELORMONVERLASIONLINISANDCTASILSTEPLEOBAFOOK
STOPGTSAUIMECISTOPSHIMSPRELORMONVERLASIONLOLTECALMONLIDERINGINTER
OCNWINDALCEUUALLTEMOPUDBORSTETOSDAYWADETERBEEUVERYLUEEHYANDLSPHID
CTESTERSTEHUEALPREOBWAKINGADAILYMTAINCOPUDFECORSTSTESROPFUEOB

GESSINGPHANDHIMKINGSTEDAILIELCTENLPDDENUYACTISERAFFISCISTHINKEYEL
RANMUOLEFYTERSTERECALNOSTINGLOVERYREWARKAFUEINSTAS

Figure C.3: A sample decryption with approximately 60% letters correct.
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