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Abstract. Automatically recognising valid decryptions as a result of
ciphertext only cryptanalysis of simple ciphers is not an easy issue and
still considered as a taxing problem. In this paper, we present a new
universal compression-based approach to the automatic cryptanalysis of
transposition ciphers. In particular, we show how a Prediction by Par-
tial Matching (PPM) compression model, a scheme that performs well at
many language modelling tasks, can be used to automatically recognise
the valid decrypt with a 100 % success rate. We also show how it signifi-
cantly outperforms another compression scheme, Gzip. In this paper, we
propose a full mechanism for the automatic cryptanalysis of transposition
ciphers which also automatically adds spaces to decrypted texts, again
using a compression-based approach, in order to achieve readability.

Keywords: Cryptanalysis · Transposition ciphers · Plaintext recogni-
tion · Compression · PPM · Word segmentation

1 Introduction

Text compression is the method of deleting redundant information in some text
in order to reduce space that is needed to store it, thereby minimising the time
which is also needed to transmit this information without losing any information
from the original text. Practically, there are two major ways of constructing
text compression models: dictionary and statistical approaches [1]. Prediction by
Partial Matching (or PPM) is a finite-context statistical based approach while
Gzip is an example of a dictionary based approach (which uses the Lempel-Ziv
algorithm [9]). PPM models perform well on English text compared to other
models and they emulate human predictive ability [25].

There are variety of approaches and algorithms used for cryptanalysis. Using
compression schemes as one way to tackle the plaintext recognition problem is
still a relatively new approach with few publications. In essence, we investigate
how to devise better solutions to the plaintext recognition problem by using
transposition ciphers as a test bed. In this paper, we propose a novel compression-
based approach for the automatic cryptanalysis of transposition ciphers with
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no need for any human intervention. Furthermore, we propose further methods
also based on using compression to automatically insert spaces back into the
decrypted texts in order to achieve readability (as we perform our experiments
on English alphabetic characters).

The paper is organised as follows. The next section gives a brief description
of most of the previous research into the cryptanalysis of transposition ciphers.
Section 3 motivates the use of our compression-based approach as a method of
tackling the plaintext recognition problem and reviews the calculations of the
codelength metric used by our method which is based on the PPM and Gzip
compression schemes. Transposition ciphers are described in Sect. 4. The full
description of our method and the pseudo-code is illustrated in Sect. 5. Our
experimental results are discussed in Sect. 6.

2 Previous Work

Various cryptanalysis methods have been used to break transposition ciphers,
starting with traditional attacks such as exhaustive search and anagramming,
and then leading to genetic algorithm based methods. Anagramming is a well-
known traditional cryptanalysis method. It is the method of repositioning dis-
arranged letters into their correct and original positions [10,20,22]. Although,
the traditional attacks are more successful and easy to implement, but automat-
ing these types of attack is not an easy issue. It requires an experienced and
trained cryptanalyst. Mathematical techniques have been used in these attacks
but the main role tends to be on the human expert. The final decision is made
by the human cryptanalyst with regards to which algorithm is used in attack.

Many researchers have been interested in developing and automating crypt-
analysis against transposition ciphers. One of the earliest papers was published
by Matthews in 1993 [17]. He presented an attack on transposition ciphers using
a genetic algorithm known as GENALYST. The fitness function was based on
the frequency of the common English digrams and trigrams that appear in the
deciphered text. This attack was only successful at key size of 7, with no successes
at key length of 9 and 11. It achieved average success rates of 2–4 %.

Clark [5] published three algorithms that used simulated annealing, genetic
algorithm and tabu search in the cryptanalysis of transposition ciphers. The fit-
ness function used also depended on the frequencies of digrams and trigrams.
By using a genetic algorithm, the success rates of block sizes of 4 and 6 ranged
from 5 to 91 %. Tabu search was faster than the other algorithms while simu-
lated annealing was the slowest but with a high performance of solving cipher-
texts especially with large periods. It was able to correctly recover 26 of the
key elements, for a transposition cryptosystem of period 30 [4]. Dimovsk and
Gligoroski [8] came to similar conclusions presented in Clark’s publication. The
fitness function that was used in their paper was based on bigrams statistics due
to the expensive task of calculating trigrams statistics.

Toemeh and Arumugam [26] used a genetic algorithm to break transposition
ciphers. They used a slightly modified list of the most common bigram and
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trigrams than were used in Clark paper. Three additional trigrams EEE, AND
and ING were included with the Clark table. They concluded that when the
ciphertext size is larger, the number of breakable keys increases.

In 2003, a genetic algorithm was presented by Grundlingh and Van
Vuuren [12], which resulted in a 6–7 % success rate. The fitness function they
used in their research was based on the discrepancies between the expected num-
ber of occurrences of a digram in a natural language text (per N characters), and
the observed count of this digram in a ciphertext of length N . For this attack,
no convergence of fitness function values had been found. They concluded that
genetic algorithmic attacks were not effective against columnar transposition
ciphers since this cipher is more robust than substitution ciphers. This attack
was only successful at a key size of 7.

A permutation-based genetic algorithm was used by Bergmann, Scheidler
and Jacob [2]. Two fitness functions were used in this research. The first function
was based on calculating the redundancy of the decrypted text, then comparing
it to the expected redundancy of the same sized English text and the same
sized random text. The second function was based on the use of known text
appearing in a message. Hamming Distance was used to check the presence
of this supplied piece of known text in the decrypted text at a predetermined
position. A transposition cipher with a key size of up to 12 and 500 characters
in length was able to be deciphered correctly using this algorithm.

Giddy and Safavi-Naini [11] used a simulated annealing approach. The algo-
rithm was not able to decrypt the cipher correctly, if the length of this ciphertext
was short (100 characters or less). They noted that this is the supposed behaviour
of all cryptanalysis schemes. Ciphertexts that have dummy characters added to
them were decrypted poorly as well. The cost function here was based in terms
of bigram frequencies.

As mentioned above, many of the research methods applied genetic algo-
rithms to the automatic cryptanalysis of transposition ciphers. They used differ-
ent key lengths ranging from 2 to 30 with different ciphertext lengths. None of
these algorithms were able to correctly recover all the plaintext and achieve full
success. In fact, Delman [7] concluded that the genetic algorithm-based approach
did not deserve further effort. He stated that further investigation in traditional
cryptanalysis techniques was warranted rather than for genetic algorithms.

Two heuristics were adopted by Russell, Clark and Stepeny [19]. They used
the Ant Colony System algorithm which used a dictionary to recognise the plain-
text, and bigrams to indicate adjacent columns. This attack was able to decipher
shorter cryptograms (300 characters) by a factor of about a half compared to
other previous meta-heuristic methods. Chen and Rosenthal [3] used a Markov
chain Monte Carlo method to break transposition ciphers. Bigram statistics was
used as a base to calculate the score function. This method presented a good
performance with key length 20 and 2000 characters ciphertext. Wulandari, Ris-
mawan and Saadah [27] presented another attack against transposition ciphers
by using a differential evolution algorithm. The fitness function was based on
bigram and trigram statistics. This algorithm was able to decrypt the ciphertext
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correctly, with key lengths up to 9; with key length equal to 10, it was able to
find half of the correct answers.

Irvine [15] has been the only researcher to date to have used a compression
algorithm to break a cipher system—in this case, substitution ciphers. He used
a compression algorithm (PPM model) combined with simulated annealing app-
roach to perform an automated cryptanalysis of substitution ciphers. He was
able to achieve a success rate of 83 %. However, a similar approach has yet to
have been applied to other ciphers systems, including transposition ciphers.

In this paper, we will propose a novel compression-based approach for the auto-
matic recognition of the plaintext of transposition ciphers with a 100 % success
rate. We will use different key lengths (ranging from 2 to 12) and different cipher-
text lengths, even very short messages with only 12 characters while the shortest
messages used in the previous research was not less than 100 characters. In our
paper, we will present both a method for automatically decrypting transposition
ciphertexts and then automatically achieving readability subsequently. This will
automatically insert spaces into the decrypted text, while most of the previous
works did not address or refer to this fundamental aspect of the cryptanalysis.

3 Compression as a Cryptanalysis Method

The ciphertext only attack (cryptanalysis) of simple ciphers is not a trivial issue
as evidenced by the wide range of literature in the previous section. It heav-
ily depends on the source language and its statistical features. Particularly in
ciphertext only attack, it is difficult to recognise the right decrypt quickly. Many
of the published cryptanalysis techniques can not run without human interven-
tion, or they assume that at least the plaintext is known, in order to be able to
detect the proper decryption quickly.

Having a computer model that is able to predict and model natural language as
well as a human is critical for cryptology [24]. Teahan showed that PPM compres-
sion models had the ability to predict text with performance levels close to expert
humans [25]. The basic idea of our approach depends on using the PPM model as a
method for computing the compression ‘codelength’ of each possible permutation
which is a measure of the information [15] contained in each. Permutations with
shorter codelengths help to reveal better decrypts. We show how to use this to eas-
ily and automatically recognise the true decrypt in a ciphertext only attack against
transposition ciphers. In this paper,we also try another compressionmethod,Gzip,
as a basis for calculating the codelength metric in order to determine which is the
most effective compression method to use to recognise the valid decryptions, but
with significantly less success compared to the PPM-based method.

3.1 PPM Compression Code Length Metric

Prediction by Partial Matching, or PPM, is a finite-context statistical based
approach. This technique was first described in 1984 by Cleary and Witten [6].
The major concept of this modelling is dependent on using previous symbols
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(called the context of order k, where k represents the number of prior symbols)
to predict the next or upcoming symbol. The number of symbols used in the
context defines the maximum order of the context model.

For each context model, prediction probabilities can be calculated from the
observation of all symbols or characters that have succeeded every length-k sub-
sequence, as well as from the frequencies of occurrence for each character. A dif-
ferent predicted probability distribution is gained from each model; as a result,
the probabilities of each character or symbol that has followed the previous k
characters (the previous time) are used to estimate the next character. PPM
models have been shown to be very effective at compressing English and have
comparable performance to human experts’ predictive ability [25].

Several PPM variations have been devised depending on the methods that
have been suggested for computing the probabilities of each symbol. PPMD is
one of these variants first developed by Howard [13]. Experiments show that in
most cases, PPMD performs better than the other variants PPMA, PPMB and
PPMC. It is similar to PPMC with the exception that the probability estimation
of a new symbol or character is different. The treatment of the new symbols
becomes more consistent [14] through adding 1

2 to the count of the new symbol
and to the escape count as well:

e =
t

2n
and p(s) =

2c(s) − 1
2n

where e denotes the escape probability, p(s) is the probability of symbol s, c(s)
is the number of times that the symbol s followed the context, n denotes the
number of tokens that have followed and t refers to the number of types. For
example, if a specific context has occurred three times previously, with three
symbols a, b and c following it one time, then, the probability of each one of
them is equal to 1

6 and escape symbol probability is 3
6 .

The essential idea of our approach depends on using a PPMD compression
model to compute codelength values of each possible permutation. From a com-
pression point of view, the ‘codelength’ of a permutation for a cryptogram is
simply the absolute ratio of the cryptogram length (in bits) when compressed to
the cryptogram length in characters. In particular, the smaller the codelength,
the more likely the cryptogram is close to the language source. By using this
metric for assessing the quality of the solution, it can be used for finding valid
decryptions automatically.

One of the most important steps in our implementation is the step of priming
the compression models using a large set of English training data. This step allow
us to overcome the problem of using an uninitialised compression scheme, where
at the beginning of a message there is not enough and sufficient data to effectively
compress the texts.

3.2 Calculating Codelengths Using the Gzip Compression Method

Gzip or GNU zip is one of the most important compression utilities. It is one
of the most common lossless compression method on the Unix operating system
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and on the Internet. It was written by Jean- Loup Gailly and Mark Adler.
The Gzip compression scheme is a dictionary based approach (using Lempel-Ziv
algorithm [9]) whereas PPM is a statistical context based approach.

The fundamental reason of experimenting with another compression method
(Gzip) in our approach is to determine which is the most effective method,
when applying to the problem of plaintext recognition using a compression-based
approach.

In our paper, we will calculate the codelength values for the Gzip compression
scheme by using a relative entropy technique. As a result, we do not need to re-
implement the Gzip compression scheme itself, we can simply use “off-the-shelf”
software. We calculate the codelength value using the relative entropy method
using the equation ht = hT+t − hT where T is some large training data, h
represents the file size after it has been compressed, and t represents the testing
text. Simply, the basic idea of this method is to calculate the difference (in size)
between the compressed training text with the testing text added to it compared
to the size of the compressed training text by itself.

We also tested our relative entropy method using another well-known com-
pression scheme, Bzip2. This is another lossless compression scheme that uses
a block sorting algorithm. However, due to the algorithm’s nature, some of the
relative entropy calculations ended up being negative, so these could not be used.

4 Transposition Ciphers

In cryptography, a transposition cipher is a method of encryption by which the
content of a message is concealed by rearranging groups of letters, therefore
resulting in a permutation. The concept of transposition is an essential one
and has been used in the design of modern ciphersystems [23]. Originally, the
message was written out into a matrix in row-order and then read out by column-
order [15]. The technique can be expanded to d dimensions, by dividing a message
into blocks or groups of fixed size d (called the period) and perform a permutation
over these blocks. This permutation represents the key. The size of the key is the
same as the length of the block. Generally, if f : Zd → Zd is a permutation over
Zd, Zd = {1, ..., d}, then according to f , blocks of fixed length (d characters) are
encrypted by applying a permutation to the characters [18,21]. For example, if
d = 4 and the plaintext x = 1234 then the encrypted message (ciphertext) f
might have the permutation: f(x): 4213. Here, the first character in the original
message is moved to the third position, the third character in the block to the
fourth position, and the fourth character to the first position. Thus the original
message cryptographydemo is encrypted as:

Position: 1234 1234 1234 1234
Plaintext: cryp togr aphy demo
Ciphertext: prcy rotg ypah oedm

This ciphertext is divided into blocks of four letters and in order to hide the
key size (period), a stream of characters is transmitted continuously. In the case
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of a short block at the end, it would be encrypted by moving the letters to their
relative permutation positions with dummy letters added or just left blank.

In general, transposition ciphers are considered much harder to crack than
other basic cryptosystems such as simple substitution ciphers. Many statisti-
cal tools have been developed aiding automated cryptanalysis of substitution
ciphers while the automatic cryptanalysis of transposition ciphers has proven
more difficult. Generally, cryptanalysis of transpositions is quite interventionist
in that it requires some knowledge of the probable contents of the encrypted
text to give an idea into the rearrangement order that has been used [17].

5 Our Method

In this section, we will give a full description of the new approach for the automatic
cryptanalysis of transposition ciphertext. The basic idea of our approach depends
on using a compression model as a method of computing the ‘codelength’ of each
possible permutation. This compression model and the codelenghth metric repre-
sent the assessment function that can be relied on it to automatically rank alter-
native permutations and recover correct messages. In our method, the PPMD and
Gzip compression methods are used in the experiment.

Our new approach consists of two essential phases. The main idea of the first
phase (Phase I) depends on trying to break a ciphertext automatically using a
transposition of specified size by exhaustively computing all possible transpo-
sitions. The second phase (Phase II) focuses on inserting spaces automatically
(segmenting words) into the decrypted message which is outputted from the first
phase in order to achieve readability (since we remove spaces from the ciphertext
at the beginning of Phase I, as is traditional).

The pseudo-code for our method is presented in Figs. 1, 2 and 3. At the begin-
ning of the first phase (Phase I), we remove all the spaces from the encrypted
message as presented in line 3 in Fig. 1. The approach at this stage uses text
comprising just 26 alphabetic English characters). The text is divided into blocks
with a specified size according to the period (key size) of transposition (see line
6 in Fig. 1). Then, all possible transpositions are generated, and the compression
codelength recomputed at each stage (see line 7 to 10 in the next figure). PPM
and Gzip are used as the means for computing the codelength. As we start to get
permutations with smaller codelength values, this means we are closer to finding
the correct message. In other words, the hope is that the cryptogram that has
the smallest codelength value will represent the valid decrypted message.

As the output of the previous phase are texts without any spaces, the second
phase focuses on inserting spaces into the input text automatically ‘segmenting
words’, in order to achieve readability. We have investigated two alternative ways
of doing this. In the first method, Phase II-A, according to the decrypted message
permutation which is outputted from the previous phase, all further possibilities
are explored where a space is inserted after each character. Underperforming
possibilities which have bad colelength values are pruned from the priority queue
and only the best performing possibilities are returned at the end (see Fig. 2).
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1- READ ciphertext

2- SET maximum-period of transposition to a specified size

3- REMOVE spaces from the ciphertext

4- FOR each period

5- IF ciphertext length divided by period equal to 0 THEN

6- DIVIDE the ciphertext into blocks according to the period

7- FOR each possible permutation

8- CALCULATE codelength value using PPM compression

model or Gzip

9- STORE a permutation that have smaller codelength

value in priority queue

10- ENDFOR

11- ENDIF

12- ENDFOR

13- RETURN priority queue

Fig. 1. Pseudo-code for main decryption phase, Phase I

In the second method, Phase II-B, the Viterbi algorithm is used to search for the
best probable segmentation sequences (see Fig. 3). Compression schemes are used
as a base of measuring codelengths and automatically detecting correct solutions
in both these two alternatives (Phase II-A and Phase II-B). The pseudo code of
the two approaches are shown in Figs. 2 and 3.

In our method, we have used two variants of the PPMD model, one without
update exclusions [24] and the standard PPMD. This was done to investigate

1- SET priority queue Q1 to have the decrypted message from the priority

queue from Phase I

2- REPEAT

3- SET Q2 to empty

4- FOR each message in the priority queue Q1

5- CREATE new message with a single space addad

6- INSERT modified message into Q2

7- CALCULATE codelength value for the new message using PPM

compression model or Gzip method

8- STORE new message that have a smaller codelength value

than those in the priority queue Q2

9- ENDFOR

10- IF there is any improvement in the codelength value THEN

11- REPLACE Q1 with Q2

12- UNTIL there is no improvement in the value of the codelength

13- RETURN front of priority queue Q1

Fig. 2. Pseudo-code for Phase II-A
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1- READ message from the priority queue from Phase I

2- USE Viterbi algorithm to search for the best probable segmentation

sequences

3- RETURN Decrypted message which have best segmentations that present

the best encoding sequence

Fig. 3. Pseudo-code for Phase II-B

which is the most effective model when applied to the problem of the automatic
cryptanalysis of transposition ciphers.

In order to clarify and organize our experiments and results, we divide our
different experiments into different variants with a specified label as shown in
the Table 1.

Table 1. Variants used in our experiments

Variants Phase I Phase II-A Phase II-B

Variant A PPMD with no update
exclusions

PPMD with no update
exclusions

Variant B PPMD with no update
exclusions

PPMD with no update
exclusions

Variant C PPMD PPMD

Variant D PPMD PPMD

Variant G Gzip Gzip

According to Table 1, the first variant is called Variant A. In this variant,
PPMD without update exclusions is used to calculate the compression code-
length values. This is used for the main deception phase—Phase I and for Phase
II-A as well. All cryptograms can be solved using an order-4 model. In the sec-
ond variant Variant B, PPMD4 without update exclusions is used in both phases
Phase I and in Phase II-B. The Viterbi algorithm is used in the second phase.

A different version of the PPMD compression model is used in the third vari-
ant, which is named “Variant C”. The standard PPMD4 (with update exclu-
sion) is used as the method for calculating the codelength values for both phases
(Phase I and Phase II-A). Variant D uses the standard order-4 PPMD, as well
in the calculation of the codelength values. For the second phase, Phase II-B,
this compression model is also used as a basis for segmenting the words.

For variant G, we examine the effectiveness of another type of compression
method which is the Gzip compression system. The Gzip algorithm is used in
the main decryption phase and for the second phase “Phase II-A”, as the basis
for computing the codelength metric.
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6 Experimental Results

In our method, the order-4 PPMD models were trained on nineteen novels and
the Brown corpus using 26 and 27 character (including space) English text.
After this training operation, these models remain static during cryptanalysis.
In our experiments, we use a corpus of 90 cryptograms with different lengths
form different resources as testing texts. The lengths of the ciphertexts that
have been examined in our experiments are ranging from 12 letters to over 600
letters. Table 2 presents a sample of decryption.

Table 2. Output sample for the different phases for the ciphertext ‘prcy rotg ypah
oedm’. (Compression codelengths are listed in bits with the lowest 5 results presented
for Phase-II-A.)

Phase I Phase II-A Phase II-B

53.73 cryptographydemo 42.85 cryptography demo Cryptography demo

50.94 cryptographyde mo

59.41 cryptographyd emo

59.68 cryptograph ydemo

67.64 c ryptographydemo

A random key is generated to encipher the original text (plaintext) for each
run. After that, the attack is performed on the ciphertext. Different key sizes
(period or permutation size) and different ciphertexts with different lengths have
been experimented in our method. The results of the first phase Phase I by using
the PPM method showed that all the valid decryptions were recognised and all
the ciphertexts were able to be decrypted successfully with no errors. In our
method, and with different variants, except Variant G, we achieve a success
rate of 100 %. We have used different key size (block sizes) from two to twelve.
We experimented with 90 different standard ciphertexts with different lengths
(including very short) with different key sizes and all can be solved correctly.
In contrast, by using the Gzip algorithm in the last variant (G), we achieved a
success rate of 94 % as result of Phase I.

For each variant, we have performed two types of experiments (except for
Variant G). Since in Phase I we deal with texts without any spaces included,
our first experiment is done by using PPMD models after being trained on 26
English characters (instead of 27) as the basis of calculating codelengths. In the
other experiment, PPMD compression models trained on 27 character English
texts were used. The output result from these two experiments is the same
achieving a 100 % success rate.

The second phase focused on inserting spaces automatically into the decrypted
message that is outputted from the first phase. We used the Levenshtein distance
as a metric of measuring differences between the plaintext and the decrypted text
with spaces. Levenshtein distance metric is a commonly used string metric for
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counting the differences between two strings (such as insertions, deletions or sub-
stitution) [16]. In our approach, in almost all cases the correct (readable) solution
was found. The next table (Table 3) provides example output (with spaces) pro-
duced by the different variants.

Table 3. Example of solved cryptograms with spaces by different variants.

Variants Number of errors Decrypted message (with spaces)

Variant A 2 an excuse is worse and more terrible than

a lief or an excuse is a lie guarded

Variant B 0 an excuse is worse and more terrible than

a lie for an excuse is a lie guarded

Variant C 3 anexcuse is worse and more terrible than

a lief or an excuse is a lie guarded

Variant D 1 anexcuse is worse and more terrible than

a lie for an excuse is a lie guarded

Variant G 14 anexcuseisworse andmoreterrible

thanalieforanexcuseisalieguarded

For variant A, Fig. 4 shows the number of errors for each testing text as a
result of the second phase. Clearly, we can see that most of the space insertion
errors are less than two. The results show that 50 % of texts have correctly
inserted spaces with no errors, and more than 45 % of the cryptograms are
solved with three errors or less. The errors that occurred in some of the solved
cryptograms were minor ones, all involving spaces only. There are just three
examples that showed either 6 or 7 errors, the main reason being that each
of these examples had unusual words on particular topics not occurring in the
training data.

Variant B produces less errors than other variants. The results show that 59 %
of the decrypted texts have correctly added spaces with no errors. Furthermore,
over 36 % of the examples are spaced with just two or one errors, and about 4 %
with three errors. Just two examples had six errors and all of these are shown
in Fig. 5.

Variant C produces slightly worse results, with just 46 % of examples having
successfully inserted spaces without any errors with about 45 % are spaced with
three errors or less. In addition, nine of the solved cryptograms have four errors
or more. Figure 6 shows the results of variant C. On the other hand, variant D
presents very good results, it produces similar results to variant B but with a
few minor differences.

Figure 7 presents the number of errors for variant G as a result of phase two.
Clearly the number of errors for each solved cryptogram is much higher, in this
case with most of the space insertion errors being greater than 15. Moreover,
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Fig. 4. Errors produced from variant A
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Fig. 5. Errors produced from variant B

none of the examples produced no errors and there is just five decrypted texts
that were spaced with less than 10 errors.

Table 4 presents results concerning the average number of space insertion
errors for the 90 texts we experimented with for each of the variants. It is clear
that variant B produces the best results although other variants produce good
results as well. What is interesting is that the PPM method without update
exclusions which usually does slightly worse at the task of compression, does
better here at decryption.

The last column in the table presents the number of average errors for variant
G. The results show that the Gzip algorithm is not a good way for finding the
right solutions with a high average number of errors.
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Fig. 6. Errors produced from variant C
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Fig. 7. Errors produced from variant G

In order to investigate further the accuracy of our spaces insertion algorithms
in segmenting the 90 decrypted texts, we used three further metrics: recall rate,
precision rate and error rate. Recall is calculated by dividing the number of
correctly segmented words (using a compression model) by the total number
of words in our original 90 testing texts. The error rate metric is calculated
by dividing the number of incorrectly segmented words by the total number of
words in the testing texts. Precision is calculated by dividing the number of
correctly segmented words by the total number of words which are correctly and
incorrectly segmented.

According to Table 5, it is clear that the first four variants, which are based
on PPMD compression models, achieve quit high recall rates, which indicates
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Table 4. Average number of errors for the phase two variants.

Variants A B C D G

Average errors 1.02 0.69 1.30 0.81 21.62

Table 5. Recall, precision and error rates for the different variants on segmenting
words.

Variants Recall rate % Precision rate% Error rate %

Variant A 95.08 95.08 4.92

Variant B 96.30 96.38 3.70

Variant C 93.91 94.34 6.09

Variant D 95.71 95.91 4.29

Variant G 3.96 16.11 96.04

high accuracy of segmenting the 90 decrypted texts. All the errors generated,
which are quite low, are those on unusual words not found in the training texts.

The average elapsed time that is required to find the valid decryptions of
the transposition ciphertexts with different lengths for different key size is pre-
sented in Table 6. This table shows the average execution time for decrypting
three ciphertexts of different lengths, for both the main decryption and spaces
insertion phases combined (labelled as ‘Both’ in the table) and just for the main
decryption phase (Phase I). The time which is needed to insert spaces auto-
matically into the decrypted text (the second phase) is based on the execution
of Phase II-A (slightly additional time is needed when using Phase II-B). The
average execution time in seconds for each ciphertext is calculated by running
the program ten times and then calculating the average.

In summary, the results showed that we are able to achieve 100 % success
rate as a result of the first phase (Phase I) either by using standard PPMD
or PPMD with-no update exclusions models. We manage to recognise all the
plaintexts and solve all the cryptograms in this phase without any errors. We
have used different block sizes (periods) ranging from two to twelve.

Table 6. Average required time to automatically cryptanalysis ciphertexts with dif-
ferent lengths for different keys size.

Ciphertext length Key size

(letter)

Time (in seconds)

5 6 7 8 9 10

Both Phase I Both Phase I Both Phase I Both Phase I Both Phase I Both Phase I

40 0.72 0.68 0.73 0.69 0.77 0.75 0.97 0.93 2.40 2.38 12.07 12.06

150 1.12 0.7 1.14 0.73 1.20 0.80 1.77 1.35 13.75 10.06 48.07 47.07

300 3.39 0.71 3.62 0.75 3.71 0.87 4.86 1.97 23.01 20.41 95.32 92.41
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In the second phase, we add spaces to these texts to improve readability by
using two methods. The first method is a slightly faster new method based on a
priority queue while the second method uses Viterbi algorithm to segment words.
Our results show that almost all decrypted texts are segmented correctly. The
maximum average number of errors (due to space insertions in incorrect places),
when using PPMD compression models, is just slightly over one (for Variant C).
This variant depends on the standard PPMD compression model as a basis for
calculating the codelength values in Phase II-A. The results showed that by using
the Viterbi algorithm (Phase II-B), we can gain slightly better results than the
other method (Phase II-A), but it needs slightly more execution time. Variant B
showed the best results. This variant depends on using a PPMD without update
exclusions model using the Viterbi method as the basis for segmenting words.

7 Conclusions

We have introduced another use of the compression-based approach for crypt-
analysis. A novel universal automatic cryptanalysis method for transposition
ciphers and plaintext recognition method have been described in this paper.
Experimental results have shown a 100 % success rate at automatically recog-
nising the true decryptions for a range of different length ciphertexts and using
different key sizes. This effective algorithm completely eliminates any need for
human intervention. The basic idea of our approach depends on using a com-
pression scheme as a base of calculating the ‘codelength’ metric, which is an
accurate way of measuring information in the text. In this paper, we provided
pseudo-code for two main phases: automatically decrypting ciphertexts and then
automatically achieving readability using compression models to automatically
insert spaces into the decrypted texts, as we performed our experiments on
ciphertext in alphabetic English characters, while most previous works did not
address this essential problem.

Two compression schemes have been investigated in our paper which are
Predication by Partial Matching (PPM) and Gzip. The experimental results
showed that PPM notably outperforms the other compression scheme Gzip. We
also found that both PPMD variants were able to recognise all the valid decryp-
tions. Concerning automatically adding spaces (word segmentation) afterwards,
PPMD without update exclusions performs slightly better than the standard
PPMD method (with update exclusions). The algorithm was able to achieve
100 % success rate using the PPM compression model on different amounts of
ciphertext ranging from 12 to 625 characters, and with different key lengths
ranging from 2 to 12. Larger key sizes and longer ciphertext length can be used,
but of course it will require longer execution times to perform the decryptions.
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