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Abstract. This paper presents an approach for the automated cryptanalysis of substitution ciphers 
based on a recent evolutionary metaheuristic called Scatter Search. It is a population-based 
metaheuristic founded on a formulation proposed two decades ago by Fred Glover. It uses linear 
combinations on a population subsets to create new solutions while other evolutionary approaches 
like genetic algorithms resort to randomization. 
First, we implement the procedures of the scatter search for the cryptanalysis of substitution and 
transposition ciphers. This implementation can be used as a framework for solving permutation 
problems with scatter search. Then, we test the algorithm and show the importance of the 
improvement method and the contribution of subset types. Finally, we compare its performances with 
those of a genetic algorithm. 
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1. Introduction 
Cryptology is the science and study of systems for secret communications. It consists of two 

complementary fields: cryptography and cryptanalysis. Cryptography is the science of making 
communications unintelligible to everyone except the intended receiver. At its opposite, there is the 
cryptanalysis whose aim is breaking ciphers, i.e. to recover the plaintext from the ciphertext without 
knowing the decryption key. 

Simple ciphers were first used hundreds years ago. A particular interest is carried to this kind of 
systems because most of the modern cryptosystems use operations of the simple ciphers as their building 
blocks. Many ciphers have a finite key space and, hence, are vulnerable to an exhaustive key search 
attack. Yet, these systems remain secure from such an attack because the key space size is such that the 
time and resources for a search are not available. Thus, automated reasoning tools can be used to perform 
attack against this systems. Many researches showed that a range of modern-day cryptological problems 
can be attacked successfully using metaheuristic search [3].  

Many automated attacks have been proposed in the literature for cryptanalysing classical ciphers. 
Previously, Spillman and al. [12] have published an attack on the simple substitution cipher using a 
genetic algorithm, Forsyth and Safavi-Naini [6] presented an attack using simulated annealing. Tabu 
search was also used in [4]; and recently, Mathews and al. [11] used  ants (ACO) to attack this ciphers. 

The evolutionary population based approach, the scatter search has been introduced recently as a 
metaheuristic for solving complex optimization problems [9,10]. It is based on a formulation for integer 
programming developed in 1977 by Fred Glover [7] and uses linear combination of a population subset to 
create new solutions. It could be viewed as a bridge between taboo search and genetic algorithms [8]. It 
has been recently applied with success to a number of combinatorial optimization problems, for instance, 
the linear ordering problem [2] and the satisfiability problem (SAT) [5]. 
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In this paper, scatter search is used to attack classical ciphers. First, we implement the procedures of 
the scatter search for the cryptanalysis of this class of ciphers. Since cryptanalysis of simple ciphers is a 
permutation problem, then this implementation can be used as a framework for solving permutation 
problems with scatter search. After, we test the method and we show the importance of the improvement 
method and the contribution of subset types. Finally, we compare its performances with those of a genetic 
algorithm. 

1.1 Simple ciphers 

There are several variants of substitution ciphers, the ones used here are the most general form (mono-
alphabetic substitution. A detailed description of these ciphers is given in[4]. In simple substitution 
ciphers, each symbol in the plaintext is replaced by another symbol in the ciphertext. A substitution 
cipher key can be represented as a permutation of the plaintext alphabet symbols. The main propriety of 
this kind of ciphers is that the n-grams statistics are unchanged by the encryption procedure. 

2. A General Overview of the Scatter Search 
Basically, the scatter search method starts with a population of good and scattered solutions. At each 

step, some of the best solutions are extracted from the collection to be combined and included in a set 
called the reference set. A new solution is then obtained as a result of applying a linear combination on 
the extracted solutions. The quality of the new solution is then enhanced by an improvement technique 
such as a local search. The final solution will be included in the reference set if it presents interesting 
characteristics with regards to the solution quality and dispersion. 
Although it belongs to the population-based procedures family, scatter search differs mainly from genetic 
algorithms by its dynamic aspect that does not involve randomization at all. Scatter search allows the 
combination of more than two solutions, it gets thus at each step more information. By combining a large 
number of solutions, different sub-regions of the search space are implicated to build a solution. Besides, 
the reference set is modified each time a good solution is encountered and not at the combination process 
termination. Furthermore, since this process considers at least all pairs of solutions in the reference set, 
there is a practical need for keeping the cardinality of the set small (<=20). The scatter search can be 
summarized in a concise manner as follows: 

Generate an initial population P 
while not Stop-Condition do 
� Initialize the reference set with the solutions selected to be combined 
� Generate new solutions by applying the combination process 
� Improve new solutions quality 
� Insert new solutions in population with respect to quality and dispersion criteria 

end while 

The procedure stops as in many metaheuristics, when during a small number of iterations no 
improvement in solutions quality is recorded or when we reach a certain number of iterations limited by 
physical constraints. 

The fact that the mechanisms within scatter search are not restricted to a single uniform design allows 
the exploration of strategic possibilities that may prove effective in a particular implementation. These 
observations and principles lead to the following template for implementing scatter search[9]: 

� A Diversification Generation Method to generate a collection of diverse trial solutions, using an 
arbitrary trial solution (or seed solution) as an input. 

� An Improvement Method to transform a trial solution into one or more enhanced trial solutions.  
� A Reference Set Update Method to build and maintain a reference set consisting of the b “best” 

solutions found (where the value of b is typically small, e.g., no more than 20), organized to 
provide efficient accessing by other parts of the method. Solutions gain membership to the 
reference set according to their quality or their diversity. 

� A Subset Generation Method to operate on the reference set, to produce a subset of its solutions 
as a basis for creating combined solutions. 

� A Solution Combination Method to transform a given subset of solutions produced by the subset 
generation method into one or more combined solution vectors. 
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2.1 The Reference Set 

The utility of the reference set RefSet consists in maintaining the b best solutions found in terms of 
quality or diversity, where b is an empirical parameter. RefSet is partitioned into RefSet1 and RefSet2, 
where RefSet1 contains the b1 best solutions and RefSet2 contains the b2 solutions chosen to augment the 
diversity. The distance between two solutions is defined to measure the solutions diversity. We compute 
the solution that is not currently in the reference set and that maximizes the distance to all this solutions 
currently in this set. 

2.2 The Subset Generation Method 
The solution combination procedure starts by constituting subsets from the reference set that have useful 
properties, while avoiding the duplication of subsets previously generated. The approach for doing this, 
consists in constructing four different collections of subsets, with the following characteristics:  

� Subset-Type 1: all 2-element subsets. 
� Subset-Type 2: all 3-element subsets derived from the 2-element subsets by augmenting each 2-

element subset to include the best solution not in this subset. 
� Subset-Type 3: all 4-element subsets derived from the 3-element subsets by augmenting each 3-

element subset to include the best solution not in this subset. 
� Subset-Type 4: the subsets consisting of the best i elements, for i=5 to b. 

 

The experiments described in [1] showed that at least 80% of the solutions that were admitted to the 
reference set came from combinations of type-1 subsets, but this should not be interpreted as a 
justification for completely disregarding the use of combinations other than those from type-1 subsets. 

2.3 The Solution Combination 

Scatter search generates new solutions by combining solutions of RefSet. Specifically, the design of a 
combination method considers the solutions to combine and the objective function. A new solution 
replaces the worst one in RefSet1 if its quality is better. In the negative, the distances between the new 
solution and the solutions in RefSet are computed. If diversification is improved, the new solution 
replaces the element of RefSet2 that has the smallest distance. Otherwise, it is discarded. 

3. The design of Scatter search for the cryptanalysis of substitution ciphers 
In our case, a solution is a cipher key. A key is a permutation of the plaintext’s alphabet. The 

alphabet’s characters are ordered according to the decreasing order of their standard frequency; e.g., in 
English this order is (_,e,t,a,o,n,h,i,s,r,d,l,u,m,w,g,y,c,f,b,p,k,v,x,j,q,z). The reason for this ordering will 
become apparent when generation method and combination method are presented. 

Before implementing scatter search’s methods, we must define two basic notions of the scatter search: 
how to estimate solution’s fitness and distance between two given solutions. This last measure is a typical 
characteristic of the scatter search. 

3.1 The fitness function 

To estimate the fitness of a given solution, this solution is used to decrypt the intercepted ciphertext, 
then we calculate the difference between n-gram statistics of the decrypted text with those of the language 
assumed known. 
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where: 
- A: The plaintext’s alphabet. 
- jα : constants which allow assigning of different weights to each n-gram, and 1=α∑ j . 

- ( )niiP ,...,1 : standard frequency of the n-gram ( )nii ,...,1 . 
- ( )niiC ,...,1 : frequency of the n-gram ( )nii ,...,1  in the decrypted message. 
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All attacks on classical ciphers max_ngram = 3, i.e. the n-grams are restricted to unigrams, bigrams 
and trigrams. Equation (1) provides an estimation for the distance between frequencies of decrypted text’s 
n-grams and frequencies of the plaintext’s language, many keys can provide the optimum value, or the 
authentic key don’t give the optimum value. For this, we’ll use another heuristic called ‘Word’, which is 
more time-consuming. It estimates the number of correct words in the decrypted text. 
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where: 
- l

PM : a word belonging to the text P whose length is l. 
- L: length of the text P. 

Formula (2) estimates the ratio of the sum of recognized word’s lengths on the total text’s length. The 
use of this function is restricted to evaluate solutions newly inserted in RefSet at each iteration, and 
therefore to stop the search if a suitable value is reached. Formula (1) will be used when an evaluation of 
the solution’s quality is required in the scatter search’s methods. 

3.2 The distance measure 

The way to evaluate the distance between two solutions is an important element of the scatter search, 
because the diversification aspect is essentially based on this measure. We defined the distance between 
two given solutions ( )npppp ,...,, 21=  and ( )nqqqq ,...,, 21=  as follow: 

( ) ( )
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For example: the distance between ( )4,3,2,11 =s  and ( )3,4,1,22 =s  is 2. 
  ( ) ( ) ( )4,3,2,13,4,2,13,4,1,2 12 =→→= ss   ⇒  ( ) 2, 21 =ssd  

3.3 The improvement method 

This method consists of a simple local search procedure exploring the solution’s neighbourhood. In 
this context, a neighbouring solution is a solution obtained by permuting two neighbouring elements of 
the current solution. The research of the best improvement for all solutions is very expensive, therefore 
this implementation is restricted to explore the first improvement and stops when a local optimum is 
found or after a fixed number of iterations. 

3.4 The diversification generation method 

Our method generates the initial population by two different approaches, where each one generates a 
part of the population, all generated solutions are improved by the previous method before being inserted 
in the initial set P.  

� The first generator uses an existing solution of good quality (seed solution) and browses its 
neighbourhood (solutions being to a small distance of this solution but with avoiding the 
immediate neighbours since those will be browsed by the improvement method). The seed 
solution can be reached by a previous resolution tentative, or according to a heuristic like this 
one: order characters according to the decreasing order of their apparition frequencies in the 
ciphertext, it permits to minimize the difference of unigrams frequencies. 

� The second generator employs controlled randomised process drawing upon frequency memory 
to generate a set of diverse solutions. 
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3.5 The solution combination method 

This method –like the improvement method– is a problem-specific mechanism, since it is directly 
related to the solution representation. The adopted method uses a vote mechanism, it browses each 
solution to combine in a left to right direction, and the new solution is constructed element by element: at 
each step the vote mechanism determines the following element to add. The number of voices granted by 
a solution to its element depends on the position of this element in this solution. For example, An element 
being in the 1st position of a solution, and after 3 iterations not appearing again in the constructed solution 
will receive 3 voices of its solution.  

 
Procedure Combination method (S1,…,Sp : solution) : Solution ; 
Var 
Vote : Array [1..N] of integer; 
F : Array [1..N] of integer; 
OldElement : Array [1..p] of lists of characters ; 
 
Begin 

For i =1 to N do 
begin 

For j =1 to p do 
if  Sj[i] ∉ { SNew[1],…, SNew[i-1]} then 

begin 
find k \ Sj[i] =ak ;        // Sj[i] is the kth alphabet character 
Vote[k]++ ; 
if   f(Sj) > F[k] then  F[k] = f(Sj) ; 

end ; 

find m \ [ ]( )jVoteMaxmVote
N

j 1
][

=
=  and [ ]( )jFMaxmF

N

j 1
][

=
=  ; 

SNew[i] =am ; 
Vote[m] = 0 ; F[m] = 0 ;         //don’t consider this element at the next votes 
For j =1 to p do 

begin 
Delete am from the list OldElement[j] ; 
For (each element c in OldElement[j]) do Vote[k]++ \  c = ak; 
if Sj[i] ∉ { SNew[1],…, SNew[i]} then  Add Sj[i] in the list OldElement[j] ; 

end ; 
end ; 

Return (SNew) ; 
End ; 
 
 
where: 

- Vote : contains the vote scores. 
- F : contains for each element, the maximal fitness value obtained by its solutions. 
- OldElement : contains for each solution, a list of its not elected elements. 
- (a1,…,aN) : the alphabet. 
- Sj[i] : denotes the ith element of the jth solution. 

 



 
6

3.6. The overall procedure 

The scatter search procedure can be summarized as follow: 
 
Procedure SS-Cryptanalysis (Seed: Solution) : Solution ; 
Begin 

For Iter = 1 to MaxIter do 
begin 
P = GenerationMethod (Seed,Pop_Size); 
RefSet(P,b1,b2); 
For each Solution S∈RefSet1 do If (Word(S)>MinValue) then Return(S) and Stop; 
NewElements = TRUE; Stop = FALSE;  
While (NewElements and not Stôp) do 

begin 
NewElements = FALSE; 
GenerationSubsets(RefSet); 
For each Subset (S1,…, Sp) do 

begin 
Snew = CombinationMethod(S1,…, Sp); 
S* = ImprovementMethod(Snew); 
If (S*∉RefSet and ∃ S∈RefSet1/ OV(S*)>OV(S)) then    // OV is the evaluation function 

Begin   replace S by S*;   NewElements = TRUE;   end 
Else If (S*∉RefSet and ∃ S∈RefSet2/ dmin(S*)>dmin(S)) then  

Begin   replace S by S*;   NewElements = TRUE;   end; 
end; 

For each Solution S∈RefSet1 do If (Word(S)>MinValue) then Return(S) and Stop = TRUE; 
end;  

if (Iter < MaxIter) then Seed = the best solution of RefSet1; 
end; 

Return(the best solution of RefSet1); 
End; 

4. Experiments  
The cryptanalysis procedure has been implemented in Pascal on a personal computer. First, numerical 

tests were carried out to set the parameters of the scatter search algorithm. In a second steps, we 
performed experiments in order to evaluate method’s performances and to compare them with those of a 
genetic algorithm. The used plaintexts become from various texts (articles, classics) chosen at random 
and of total size adjoining 10 Millions of characters. Standard frequencies have been calculated from 
these texts. 

5.1 Setting the algorithm’s parameters 

The effectiveness of the n-grams types. The aim of this experiment is to evaluate the effectiveness of 
each one of the n-grams types. We evaluated the average number of key elements correct with varying 
values of the constants jα  in equation (1). We applied the following restriction to the n-gram’s weights 

followed in order to keep the number of combinations of the constants 1α , 2α  and 3α  workable. 
- { }1;9,0;8,0;7,0;6,0;5,0;4,0;3,0;2,0;1,0;0,, 321 ∈ααα  
- 1321 =α+α+α  
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Figure 2: The search’s results with varying weights of n-grams 
 

Figure 1 shows that a fitness function using bigrams or trigrams have better results than the one using 
unigrams, with a small advantage for the trigrams. But the profit obtained of the grams doesn't 
compensate the necessary resources for their use. A similar result is found in [4]. 

 

Contribution of the Subset’s types. In this experiment, we determine types of subsets that contribute 
best in the generation of reference solutions, and thereafter, to eliminate types of subsets that seem inert. 
We calculated number of necessary algorithm’s iterations to find the best solution for each subset type 
and for every possible combination of subset types. The best combination is subset type 2 and subset  
type 3. 
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Figure 3: Number of necessary iterations to find the best solution for each subset type 

 

Most reference solutions are generated by the combination of solutions of subsets of type 2 and type 3, 
contrary to most of the scatter search's implementations for other problems[1]. This difference can be 
explained by the combination method mechanism: high quality solutions are often close, and in most 
cases the combination of those solutions returns one of the input solutions. But when combination method 
have 3 or 4 input solutions, it works better and returns new solutions of high quality. It’s clear that using 
all subset types will give the best quality, but using only type 2 and 3 will give almost the same quality 
and reduce significantly necessary time for the execution. 
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Remaining Parameters. After extensive experiments, the following values yield solution of high quality: 
- Maximum number of iterations of the scatter search: MaxIter = 7. 
- Reference set size: b = 10 (b1=5, b2=5). 
- Initial set size: Pop_Size = 120. 

5.2 Computational results 

In this section, we present results concerning performances of the cryptanalysis procedure and a 
comparison with a genetic algorithm. For the genetic algorithm implementation, we used parameters 
values presented in [12]: population size = 1000 and mutation rate = 0,1. The crossover and mutation 
operators are similar to those presented in [4]. 
The following curve shows the average number of correct elements in the recovered keys according to the 
size of the text encoded. 
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Figure 4: A comparison between scatter search and a genetic algorithm  

 

Figure 3 shows clearly that scatter search returns solutions of better quality than the genetic algorithm 
(approximately 15%). The good performance of the scatter search procedure is -for the most part- the 
result of the improvement method which permits to explore better the neighbourhood of every considered 
solution. But in return, it needs more time to converge to the returned solution (approximately 75%). 
To clearly show the importance of the improvement method; we remade the previous experimentation, 
but without using the improvement method for the research procedure, we get the following results: 
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Figure 5: A comparison between scatter search (without improvement method) and a genetic algorithm  
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The curve above shows that solutions returned by the scatter search are of very lower quality than 
those returned previously. 

The elimination of the improvement method from the scatter search decreased the rate of correct 
elements, because the scatter search mechanism is in this case equivalent to the genetic algorithm’s one; 
but the fact that scatter search operates on a small population sees to it that the set of references converges 
prematurely and often toward middle quality solutions. 

6. Conclusion 
In this paper, scatter search is used to perform an automated attack against classical ciphers. First, we 

presented an implementation of the scatter search’s procedures for the cryptanalysis of this class of 
ciphers. Since cryptanalysing simple ciphers is a permutation problem, then this implementation can be 
used as a framework for solving permutation problems with scatter search. Then, we performed tests, and 
the algorithm gave good results. We showed the contribution of each subset type and stressed the 
difference of contribution of certain subset types between this problem and other problems. We showed 
also that the robustness of the algorithm relies essentially on the improvement method.  

It is clear that the heuristic methods have an important role to play in cryptanalysis. The next step is the 
cryptanalysis of more complex systems which use bit as an encoding unity. In this case, it’s impossible to 
perform attack based on linguistic characteristics or frequencies analysis, but a ‘known plaintext’ attack 
or a ‘chosen plaintext attack’ are used. Another perspective is to use the meta-heuristic methods in 
conjunction with classical cryptanalysis techniques (like the differential analysis) to improve their 
efficacy. 
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